DensityFrom Wikipedia, the free encyclopedia
This article is about mass density. For other uses, see Density (disambiguation).
http://en.wikipedia.org/wiki/DensityThe density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ (the lower case Greek letter rho). Mathematically, density is defined as mass divided by volume:[1]
p = m/V
where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume,[2] although this is scientifically inaccurate – this quantity is more specifically called specific weight.
For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser.
To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material, usually water. Thus a relative density less than one means that the substance floats in water.
The density of a material varies with temperature and pressure. This variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object and thus increases its density. Increasing the temperature of a substance (with a few exceptions) decreases its density by increasing its volume. In most materials, heating the bottom of a fluid results in convection of the heat from the bottom to the top, due to the decrease in the density of the heated fluid. This causes it to rise relative to more dense unheated material.
The reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is an intensive property in that increasing the amount of a substance does not increase its density; rather it increases its mass.
Gravitational accelerationFrom Wikipedia, the free encyclopedia
Main article: Classical mechanics
http://en.wikipedia.org/wiki/Gravitational_accelerationIn physics, gravitational acceleration is the acceleration on an object caused by force of gravitation. Neglecting friction such as air resistance, all small bodies accelerate in a gravitational field at the same rate relative to the center of mass.[1] This equality is true regardless of the masses or compositions of the bodies.
At different points on Earth, objects fall with an acceleration between 9.78 and 9.83 m/s2 depending on altitude and latitude, with a conventional standard value of exactly 9.80665 m/s2 (approx. 32.174 ft/s2). Objects with low densities do not accelerate as rapidly due to buoyancy and air resistance.
BuoyancyFrom Wikipedia, the free encyclopedia
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources.
Unsourced material may [must] be challenged and removed! (July 2014)
The forces at work in buoyancy. Note that the object is floating because the upward force of buoyancy is equal to the downward force of gravity.
http://en.wikipedia.org/wiki/BuoyancyIn science, buoyancy (pronunciation: /ˈbɔɪ.ənᵗsi/[1][2] or /ˈbuːjənᵗsi/)[1][2] (also known as upthrust) is an upward force exerted by a fluid that opposes the weight of an immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus a column of fluid, or an object submerged in the fluid, experiences greater pressure at the bottom of the column than at the top. This difference in pressure results in a net force that tends to accelerate an object upwards. The magnitude of that force is proportional to the difference in the pressure between the top and the bottom of the column, and (as explained by Archimedes' principle) is also equivalent to the weight of the fluid that would otherwise occupy the column, i.e. the displaced fluid.
For this reason, an object whose density is greater than that of the fluid in which it is submerged tends to sink. If the object is either less dense than the liquid or is shaped appropriately (as in a boat), the force can keep the object afloat. This can occur only in a reference frame which either has a gravitational field or is accelerating due to a force other than gravity defining a "downward" direction (that is, a non-inertial reference frame). In a situation of fluid statics, the net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the body.[3]
The center of buoyancy of an object is the centroid of the displaced volume of fluid.
Specific gravityFrom Wikipedia, the free encyclopedia
Not to be confused with specific weight.
This page is about the measurement using water as a reference. For a general use of specific gravity, see relative density. See intensive property for the property implied by "specific".
http://en.wikipedia.org/wiki/Specific_gravitySpecific gravity is the ratio of the density of a substance to the density (mass of the same unit volume) of a reference substance. Apparent specific gravity is the ratio of the weight of a volume of the substance to the weight of an equal volume of the reference substance. The reference substance is nearly always water at its densest, (4°C) for liquids and for gases, air at room temperature, (21°C). That being stated temperature and pressure must be specified for both the sample and the reference. Pressure is nearly always 1 atm equal to 101.325 kPa. Temperatures for both sample and reference vary from industry to industry. In British beer brewing practice the specific gravity as specified above is multiplied by 1000.[1] Specific gravity is commonly used in industry as a simple means of obtaining information about the concentration of solutions of various materials such as brines, hydrocarbons, sugar solutions (syrups, juices, honeys, brewers wort, must etc.) and acids.
Relative densityFrom Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Relative_densityRelative density, or specific gravity,[1][2] is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity usually means relative density with respect to water. The term "relative density" is often preferred in modern scientific usage.
If a substance's relative density is less than one then it is less dense than the reference; if greater than 1 then it is denser than the reference. If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float. A substance with a relative density greater than 1 will sink.
Temperature and pressure must be specified for both the sample and the reference. Pressure is nearly always 1 atm equal to 101.325 kPa. Where it is not, it is more usual to specify the density directly. Temperatures for both sample and reference vary from industry to industry. In British brewing practice the specific gravity as specified above is multiplied by 1000.[3] Specific gravity is commonly used in industry as a simple means of obtaining information about the concentration of solutions of various materials such as brines, sugar solutions (syrups, juices, honeys, brewers wort, must, etc.) and acids.
Now.. THINK!
Everyman Standing Order 01: In the Face of Tyranny; Everybody Stands, Nobody Runs.
Everyman Standing Order 02: Everyman is Responsible for Energy and Security.
Everyman Standing Order 03: Everyman knows Timing is Critical in any Movement.