More info on the alleged aether: http://galileoandeinstein.physics.virginia.edu/lectures/michelson.htmlMichelson calculated that an aether windspeed of only one or two miles a second would have observable effects in this experiment, so if the aether windspeed was comparable to the earth’s speed in orbit around the sun, it would be easy to see. In fact, nothing was observed. The light intensity did not vary at all. Some time later, the experiment was redesigned so that an aether wind caused by the earth’s daily rotation could be detected. Again, nothing was seen. Finally, Michelson wondered if the aether was somehow getting stuck to the earth, like the air in a below-decks cabin on a ship, so he redid the experiment on top of a high mountain in California. Again, no aether wind was observed. It was difficult to believe that the aether in the immediate vicinity of the earth was stuck to it and moving with it, because light rays from stars would deflect as they went from the moving faraway aether to the local stuck aether.
The only possible conclusion from this series of very difficult experiments was that the whole concept of an all-pervading aether was wrong from the start. Michelson was very reluctant to think along these lines. In fact, new theoretical insight into the nature of light had arisen in the 1860’s from the brilliant theoretical work of Maxwell, who had written down a set of equations describing how electric and magnetic fields can give rise to each other. He had discovered that his equations predicted there could be waves made up of electric and magnetic fields, and the speed of these waves, deduced from experiments on how these fields link together, would be 186,300 miles per second. This is, of course, the speed of light, so it is natural to assume that light is made up of fast-varying electric and magnetic fields. But this leads to a big problem: Maxwell’s equations predict a definite speed for light, and it is the speed found by measurements. But what is the speed to be measured relative to? The whole point of bringing in the aether was to give a picture for light resembling the one we understand for sound, compressional waves in a medium. The speed of sound through air is measured relative to air. If the wind is blowing towards you from the source of sound, you will hear the sound sooner. If there isn’t an aether, though, this analogy doesn’t hold up. So what does light travel at 186,300 miles per second relative to?
There is another obvious possibility, which is called the emitter theory: the light travels at 186,300 miles per second relative to the source of the light. The analogy here is between light emitted by a source and bullets emitted by a machine gun. The bullets come out at a definite speed (called the muzzle velocity) relative to the barrel of the gun. If the gun is mounted on the front of a tank, which is moving forward, and the gun is pointing forward, then relative to the ground the bullets are moving faster than they would if shot from a tank at rest. The simplest way to test the emitter theory of light, then, is to measure the speed of light emitted in the forward direction by a flashlight moving in the forward direction, and see if it exceeds the known speed of light by an amount equal to the speed of the flashlight. Actually, this kind of direct test of the emitter theory only became experimentally feasible in the nineteen-sixties. It is now possible to produce particles, called neutral pions, which decay each one in a little explosion, emitting a flash of light. It is also possible to have these pions moving forward at 185,000 miles per second when they self destruct, and to catch the light emitted in the forward direction, and clock its speed. It is found that, despite the expected boost from being emitted by a very fast source, the light from the little explosions is going forward at the usual speed of 186,300 miles per second. In the last century, the emitter theory was rejected because it was thought the appearance of certain astronomical phenomena, such as double stars, where two stars rotate around each other, would be affected. Those arguments have since been criticized, but the pion test is unambiguous. The definitive experiment was carried out by Alvager et al., Physics Letters 12, 260 (1964). Einstein’s Answer
The results of the various experiments discussed above seem to leave us really stuck. Apparently light is not like sound, with a definite speed relative to some underlying medium. However, it is also not like bullets, with a definite speed relative to the source of the light. Yet when we measure its speed we always get the same result. How can all these facts be interpreted in a simple consistent way? We shall show how Einstein answered this question in the next lecture. http://scienceworld.wolfram.com/physics/Michelson-MorleyExperiment.htmlMichelson and Morley were able to measure the speed of light by looking for interference fringes between the light which had passed through the two perpendicular arms of their apparatus. These would occur since the light would travel faster along an arm if oriented in the "same" direction as the ether was moving, and slower if oriented in the opposite direction. Since the two arms were perpendicular, the only way that light would travel at the same speed in both arms and therefore arrive simultaneous at the telescope would be if the instrument were motionless with respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive and interfere slightly out of synchronization, producing a diminution of intensity. (Of course, the same effect would be achieved if the arms of the interferometer were not of the same length, but these could be adjusted accurately by looking for the intensity peak as one arm was moved. Changing the orientation of the instrument should then show fringes.)
Although Michelson and Morley were expecting measuring different speeds of light in each direction, they found no discernible fringes indicating a different speed in any orientation or at any position of the Earth in its annual orbit around the Sun.
In 1895, Lorentz Eric Weisstein's World of Biography concluded that the "null" result obtained by Michelson and Morley was caused by a effect of contraction made by the ether on their apparatus and introduced the length contraction equation where L is the contracted length, is the rest length, v is the velocity of the frame of reference, and c is the speed of light. Although the main interpretation of Lorentz Eric Weisstein's World of Biography for this equation was rejected later, the equation is still correct and was the first of a sequence of new equations developed by Poincaré, Eric Weisstein's World of Biography Lorentz, Eric Weisstein's World of Biography and others, resulting in a new branch of physics ultimately brought to fruition by Albert Einstein Eric Weisstein's World of Biography in special relativity. Einstein's idea of space-time contraction replaced Lorentz's interpretation of the contraction equation, and once and for all relegated ether to the history books. There is no aether. MileHigh
|