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Currents are established on the surface of conductors by the propagation of electromagnetic waves 
in the insulating material between them. If the load is less than the characteristic impedance of the 
insulating material of the line, multiple reflections and retransmissions eventually build up the line 
current to that required by the load. The currents are initially established on the surface of the 
conductors before diffusing relatively slowly into the interior and gives rise to the skin effect. The 
diffusion velocity depends the conductivity, permeability, thickness of the conductor, and the 
frequency of the excitation, and such effects of the diffusion process are difficult to conceptually 
appreciate. Fortunately, the diffusion of heat into solids is very similar, and will be used as an 
analogy to aid understanding. This diffusion is the means whereby current moves into conductors 
and flux into of magnetic cores. 

 
1. INTRODUCTION 
 
Current flow in conductors is often associated with 
liquid flow in pipes, at least conceptually. The ‘liquid’ 
being the sea of free electrons, in the conduction band 
of the material, that drift along the conductor with a 
velocity that is proportional to the electric field and 
gives rise to the current, J = σE. This liquid flow 
analogy is quite reasonable for steady dc currents, 
giving a conceptual understanding of Ohms law. 
However, while good conductors such as copper 
present little opposition to electrons moving at 
constant velocity, they strongly oppose electron 
accelerations, because the relatively large currents 
(J=σE) produce magnetic fields that are much higher 
than those produced by displacement currents in free 
space. These high magnetic fields move at relatively 
low velocities since the back emfs induced by their 
motion cannot be any larger than the driving E field. 
These induced emfs generate eddy currents within the 
conductor, which also oppose the diffusion due to 
associated energy losses. These limited back emfs and 
eddy currents cause any changes in the surface 
electric field (current) to move very slowly into the 
interior of conductors and suffer significant.  
 
The relatively slow velocity of penetration depends on 
the conductivity, and permeability of the material. The 
higher the conductivity, permeability, and size of the 
conductor, the slower is diffusion velocity.  For a very 
large copper conductor the penetration velocity at a 
frequency 50Hz is approximately 8 m/s. This relatively 
low velocity is not very apparent in every day 
applications because the currents needed to energise 
electrical loads initially propagate along the cable 

(transmission line) to the load as displacement currents 
in the insulation, at velocities approaching c. The 
displacement current builds up the line current on the 
surface of the conducting cables by multiple 
reflections, and this current diffuses into the interior of 
the conductor [1]. Thus current changes (electron 
accelerations) actually move into the conductors from 
the outside surfaces and only have to diffuse through 
the thickness of the conductors (half the diameter) 
rather than along the whole length of the cable from 
the power source to the load. If it were not for the 
displacement current setting up the surface currents in 
the first instance, energy transmission, (other than via 
relatively steady dc currents) via copper conductors 
would be virtually impossible because of the long 
diffusion times and attenuations. 
 
The skin effect results from the fact that at the 
particular frequency of operation the surface currents 
only have time to diffuse into the conductor to the skin 
depth in the ¼ period of the supply frequency. Surface 
currents move into the conductor on the rising part of 
the current waveform. Once the surface currents peak 
and start to fall, the interior currents move back out 
towards the surface of the conductor. At 50Hz the skin 
depth in copper is approx 10mm. 
 
The same diffusion process also applies to surface 
magnetic flux moving into the interior of magnetic 
cores, since most cores are electrically conductive. 
Surface flux changes produce a driving H field  (∆Hs = 
∆Bs/µ) that drives any change in surface flux into 
interior of the core. The changing flux levels induce 
back emfs as they move into the core, with resulting 
eddy currents, whose H fields oppose the driving H 
field. These induced H fields, due to changing surface 

 



flux levels moving into the interior of the core cannot 
be any greater than the driving H field at any point in 
the conductor and this is the fundamental reason for 
the low diffusion velocity. Eddy current losses also 
attenuate the fields and further reduce the diffusion 
velocity. The phase velocity for transformer steels at a 
50Hz ≈ 110mm/sec resulting in a skin depth of ≈ 0.5mm, 
and is the reason for laminating the core. 
 
The velocity at which a wave penetrates into a 
conductive material also depends upon the thickness 
of the conductor and frequency of the excitation. 
These are difficult to appreciate but fortunately the 
diffusion of heat into solids is similar, and will be used 
to conceptually understand this diffusion. 
 
2.0 CURRENT DIFFUSION 
 
The high conductivity of good conductors, such as 
copper, provide a good medium for electrons to move 
at constant velocity (steady dc currents) but opposes 
electron acceleration. Accelerating electrons produce 
changing magnetic fields with resulting back emfs that 
oppose the acceleration. The currents in conductors 
(per unit of E) are very much larger than displacement 
currents in free space (377 ohms), as also are the 
resulting changes in internal magnetic flux levels as 
any surface changes in E move into the interior. 
Changes in surface current produce the surface electric 
field (∆Es= ∆Js/σ) that drives the current changes into 
the interior. As these surface current changes move 
into the interior, back emfs are induced that can be no 
bigger than the driving E field. The high magnetic 
fields associated with the high current levels (due to 
low conductivity) is the fundamental reason why 
electric fields move very slowly into the interior of a 
conductor compared with free space. The velocities of 
these fields in free space is also limited by back emfs 
but in this case the much smaller magnetic fields have 
to move at velocity c. These induced emfs, due to the 
accelerating electrons, also create eddy currents in the 
material that absorb energy and further reduce the 
diffusion velocity due to associated losses that reduce 
the effective driving E field. These eddy current losses 
cause any changing electro-magnetic fields to be 
greatly attenuated as they go into the interior of a 
conductors. 
 
2.1 Propagation in Conducting Materials  
At any point inside the conductor following 
electromagnetic equations are relevant. 
 
      Conduction Current, J E= σ   .......(1a) 
      Flux Density, HB µ=    ...... (1b) 

      Current Density, i = J + Displacement Current  

t
E

E
t
D

Ei ro ∂
∂

+=
∂
∂

+= εεσσ  

      
t
E

E
t
D

EiHCurl ro ∂
∂

+=
∂
∂

+== εεσσ  ....... (1c) 
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Displacement Current = jωεoεrE  
     & Curl H j Eo r= +( )σ ωε ε   

The displacement current (jωεoεrE) rises with frequency 
and for copper equals the conduction current (σE) 
when ω = σ/ε ≈ 1019. Thus displacement currents can 
be neglected in comparison to the conduction current 
at normal frequencies so: 

      EHCurl σ= . 

If they could occur, any net like charges inside a 
conductor would repel each other, and quickly move to 
the surface with a time constant, τ = εo/σ ≈ 10-19, for 
copper. Thus at normal frequencies there is virtually 
no charge build up inside the conductor, and the 
electric field inside a conductor can be considered to 
be divergence free (Div E = 0). 
 
Thus at any point inside a conductor: 

0. =∇= EEDiv    ...... (2a) 

         & Curl H J E≈ = σ    ...... (2b) 
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               HjBj ωµω −=−= , for sinusoids   

         &   0BH =∇=∇ ..        ...... (2d) 
 
2.2 Electromagnetic Diffusion in Conductors 
Taking the Curl of both sides of (2b) we get 
 ECurlHCurlCurl σ=   

Substituting (2c) we get: 
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Now, B = µ H so: 
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Similarly, taking the Curl of (2c) gives  
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Substituting Curl H =σ E gives: 
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Now J = σ E so:  
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These 4 equations are basically the same, so (3d) can 
represent them all on the understanding that J can be 
replaced by E, H, or B. 



Magnetic Diffusion Equation 
Applying the vector identity 
 Curl Curl J Grad Div J J= − ∇2  

     = − ∇2 J  , since Div J = 0   

to (4d) gives the Magnetic Diffusion Equation 

    
t
J

J
∂
∂

σµ=∇2     , or    J
t
J 21

∇=
∂
∂

σµ
  ...... (4a) 

             where,  J can be replaced by E,H, or B. 

 Magnetic Diffusivity, 
σµ

α
1

=    ….. (4b) 

The diffusivity α, and hence the penetration speed, 
decreases with increase in the conductivity and 
permeability of the material.  
For copper, 
  σ = 5.8x107, µ = 4π x10-7, α = 13.7x10-3 m2/sec 
For transformer steels, 
  σ = 2x106, µ = 104 x 4π x10-7, α = 0.04x10-3 m2/sec 
 
2. HEAT CONDUCTIVITY 
 
Heat flow in solids will now be considered to gain a 
conceptual understanding of this diffusion. 
 
2.1 Thermal Conductivity 
Heat flows in a material from regions of high 
temperature to ones at lower temperature, the driving 
force being the temperature gradient. 
 

    T1 
(hot) 

 T2 (cold) 

Q 

Fig 1: Steady-State Heat Flow  
Fourier’s Law 

Heat Flux, Q k T= − ∇  (W/m2 )  

       where,  k = Thermal conductivity, ( W/m oC )  
           ≈ 388 W/m oC , for copper 
          ≈   62 W/m oC , for iron 
The thermal conductance of the material = kA/L, similar 
to G = σA/L for electrical conductance.  
 
In the steady state, if there are no heat sources or 
sinks inside the material, the temperature gradient 
throughout the material is constant. The heat leaving 
the cooler surface is equal to that flowing through the 
material from the hot surface and ∇ =. Q 0 . 
 
2.2 Thermal Diffusion 
Considering a small internal elemental volume of the 
material, the heat flow rate equation is given by [2]: 
     Heat Flow In – Heat Flow Out 
          = Change in Internal Energy – Heat Generated 
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   where, c = specific Heat ( J/kg oC ) 
 ρ = density (  kg/m3 ) 
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2.2.1 Steady State Conditions 
In the steady state the rate of change of internal 
energy is zero. 
     If internal energy sources exist then 

 ∇ = −2 1
T

k
dq
dt

 ..... Poison’s Equation 

     If there are no internal sources then 
 ∇ =2 0T  ..... Laplace’s Equation 

 
2.2.2 Unsteady (Changing) Conditions 
If there are no internal sources and constant, steady 
state conditions have not yet been achieved then: 
       Net Rate of Heat Flow into an element 
                = Rate of increase in internal energy 
Thermal Diffusion (Fourier Equation) 
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                     ≈ 114 x 10-6 m2/sec,  for copper 
                     ≈   18 x 10-6 m2/sec,  for iron 
The material absorbs energy as its temperature rises 
and so acts like a capacitance, C = cρ. Any heat 
stored in the material has to flow via the conductance 
k, so the thermal conductivity aids diffusion while c 
and ρ oppose it. Thermal diffusivity is a measure of the 
ability of a material to propagate energy compared with 
its energy storage requirements. Heat flow can be 
modelled with a distributed RC electrical circuit.  
 
The rate of heat flow is directly proportional to the 
temperature gradient, and this gradient is the driving 
force for the diffusive flow of heat.  
 

     

 T1 

T2 

A 

T1 

T2 

B
T1 

T2 

C

(a) ∇2 > 0 (b) ∇2 = 0 (c) ∇2 < 0 
Fig2: Unsteady & Steady Heat Flows  

In Fig2(a) the heat flowing into point A exceeds that 
flowing out so the temperature of point A rises. In 



Fig2(b) the heat flowing into point B is equal to that 
flowing out so the temperature of B is constant. In 
Fig2(c) the heat flowing out of point C exceeds that 
flowing in, so the temperature of point C will fall. 
 
3. COMPARISON OF    DIFFUSIONS 
 
Thermal Diffusion 
At any point in the material 
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For one-dimensional diffusion in the x direction: 
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Magnetic Diffusion (F = J, E, H, B, or T ) 
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Since F is a vector 

     F2∇  =   grad of div F  -  Curl of  Curl F 
In rectangular co-ordinates this is equal to the vector 
sum of the Laplacian operation on the 3 scalar 
components of F. 
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Although the thermal (6a) and magnetic diffusion 
equations (6b), operate on scalar and vector fields 
respectively they are essentially the same. In each case 
the diffusive flow of the entity is due to the spatial 
concentration gradient of the entity itself. 
  
Heat diffusion is opposed by the heat capacitance (cρ) 
of the material, and aided by thermal conductivity. 
However, in the case of magnetic diffusion both the 
electrical conductivity and permeability oppose the 
diffusion. 

 Diffusivity, α (m2/sec)  Material 
Thermal Magnetic 

Copper 1.14 x 10-4 137 x 10-4 

Transformer Steel 0.18 x 10-4 0.4 x 10-4 
The thermal and electrical diffusivities of transformer 
steels are similar to each other and give an 
appreciation of the slow diffusion rates of surface flux 
into magnetic cores laminations. The electrical 
diffusivity of copper is approx 100 times its thermal. 
Since diffusion velocities are proportional to the √α, 
electric fields (and hence surface currents) will diffuse 
into copper approx 10 times faster than heat. 
 
These comparisons with heat give some appreciation 
of the impossible situation that would exist if currents 
had to diffuse longitudinally through the length of 
copper conductors instead of transversely across half 
their thickness. It is very fortunate that surface 
currents are initially established along the length of 
conductors at velocities around c, by means of the 
displacement currents that flow in the insulating 
medium. 
 
4. EXAMPLES OF DIFFUSION 
 
Irrespective of whether we consider electromagnetic or 
thermal diffusion the situation is described by 
applying the relevant boundary conditions to the 
generalised diffusion equation: 

2

2

x

Fa
t
F

∂

∂=
∂
∂
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4.1 Semi-Infinite Slab  
This is the simplest case for examining diffusion, since 
there is only one boundary. Although we could use J, 
E, B, H or T, we will use temperature (T) since it gives a 
conceptual understanding of this diffusion.  
 
Consider a semi-infinite block, initially at 0oC, whose 
exposed surface temperature is suddenly raised to a 
constant Ts of 100oC, as indicated in Fig 3. 
 
 

Ts 

0 

x 

Initial Condition 
        T (x,0) = 0  
Boundary Conditions  
  At surface 
         T(0,t) = Ts 
  Deep into Block 
         T(∞,t) = 0 

Fig 3: Step Temp at Surface of Semi-Infinite Block    
As the temperature of the exposed surface rises, a 
temperature gradient is produced which will drive heat 
into the material. At any point in the block the rate of 
temperature rise must satisfy the diffusion equation. 
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Taking the Laplace Transform and inserting the 
boundary conditions gives. 
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The temperature at an internal surface, distance x into 
the block at time t, is given by. 
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     where, Ts = 100oC,   α = 1.14x10-4 
 
Temperatures in the copper block are as follows. 
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It can be seen that the temperature diffuses fairly 
slowly into the block. After 5 secs the temperature at 
20mm is only 55% because material beyond 20mm still 
requires heat, and acts like a heat sink. 
 
Temperature and electromagnetic diffusions into 
copper & steel blocks after 50msecs are shown below. 
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It can be seen that that electrical diffusion rates for 
copper are approx 10 times the thermal ones.  
 
4.2 Semi-Infinite Plate (insulated at far surface)  

Consider a plate of thickness L, whose exposed 
surface temperature is raised as shown below. 
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Initial Condition 
        T (x,0) = 0  
Boundary Conditions 
  At exposed surface 
         T(0,t) = Ts 
  At insulated surface 
       ∇ T(L,t) = 0 

Fig 4: Step Temp at Surface of Insulated Plate    
0 L 

Insulation 

 
In this case the temperature gradient at the insulated 
face is always zero since there is no heat flow out of 
this surface. Using (8a), and a series of images to 
satisfy the boundary conditions gives:  
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Heat diffusion into a copper plate 20mm thick is as 
shown below. 
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The temperature diffuses faster into plates since there 
is no heat sinking beyond the plate thickness. The end 
surface of the plate at 20mm rises to 96% after 5 secs.     
This helps to appreciate how current & flux diffusion 
velocities reduce with material thickness, although in 
these cases it is due to reductions in eddy currents.  
 
4.3 Surface Current Diffusion into Copper Plate  
In this case surface current changes diffuse into the 
copper from both sides of the plate. No diffusion flows 
cross the centre line, that in terms of the analogous 
heat flow can be considered a perfectly insulating 
surface. With this refinement Eq (8b) can be used to 
graph current diffusions into copper plate copper plate 
20mm thick as follows. 
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Centre line currents (at 10mm depth) reach approx 75% 
of the surface currents after 5msecs.    
 
4.3 Surface Flux Diffusion into Laminations  
The case for surface flux diffusion into a transformer 
steel lamination 1mm thick is indicated below. 
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In this case centre line flux levels (at 0.5mm depth) 
reach approx 85% of the surface flux after 5msecs. 
 
4.5 Sinusoidal Excitations at Surface of Block 
Consider the flow of sinusoid surface temperatures 
into a semi-infinite block as indicated below.  
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Fig 5: Sinusoidal Temp at Surface of Large Block    
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The diffusive flows depend upon the spatial gradient 
of the temperature. Heat flows into the block as the 
surface temperature rises and out of the block when 
the surface temperature falls. Positive heat flows in 

through the surface of the block for the first 90o of the 
waveform and back out for the next 90o. Similarly 
negative heat flows in and out of the block during the 
negative half cycle of the surface temperature. The 
lower the frequency the greater is the time for the heat 
to penetrate into the material before it moves back out. 
Thus the penetration depth reduces with increase in 
frequency. The rate of change of surface temperature 
increases with frequency and so do the spatial 
temperature gradients in the material. As gradients are 
the driving force for this diffusive flow, the diffusion 
velocity in the material increases with excitation 
frequency.  
 
Magnetic Diffusion with Sinusoids. 
Whether it is surface current or flux that diffuses into a 
conductive material, both E & H fields are produced 
whose amplitudes decrease as they go further in [3].  
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where,    Skin Depth ,
ω
α=δ 2

   …. (9c) 

       & Phase Velocity, ωδ=u   …. (9d) 
The amplitude of these wave is attenuated by 1/e = 
0.37 in one radian length, δ, of the propagating wave. 
The magnetic field H in conductors lags the electric 
field E by 450 due to the magnetic fields resulting from 
conduction rather than displacement currents losses. E 
& H fields in non-conductive materials are in phase . 
 
Diffusion Type Diffus  α     SkDepth δ Ph Vel u 
Copper –Elect 137x10-4 9.34 mm 2.93m/s 
Copper -Therm 1.14x10-4 0.85mm 0.27m/s 
TraSteel-Mag 0.40x10-4 0.51mm 0.16m/s 
TraSteel -Therm 0.18x10-4 0.34mm 0.11m/s 
  
5. CONCLUSIONS 
Liquid flow in pipes gives a good realistic analogy 
only for constant dc current flows in conductors since 
good conductors are a hostile medium for electrons to 
accelerate in. All changes have to diffuse in and out of 
conductors through their longitudinal surfaces, and a 
good analogy for this is heat flow in solids. 
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