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Abstract

Within the domain of classical mechanics, conservation of mechanical energy
does not follow directly from Newton’s Laws, but involves rather artificial
assumptions as to the nature of the forces between objects.

Furthermore, there are additional difficulties in this matter. Namely, does
energy conservation follow for a system consisting of an infinite number of
elastically colliding point masses – provided that the total mass of the system
is finite?

Or, do we have a problem, Houston?

Reference:

“Nonconservation of Energy and Loss of Determinism:
I. Infinitely Many Balls ; II. Colliding with an Open Set”,
Foundations of Physics 39, 937 (2009); 40, 179 (2010),
P. W. Johnson (with D. Atkinson).
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Energy conservation appears to be a direct and inevitable consequence
of Newtonian mechanics, in that, for systems which interact through con-
servative potential fields or which undergo elastic collisions, it leads directly
to conservation of energy. The work-energy theorem accounts for the en-
ergy balance, the net work being either stored as potential energy, or else
presumably converted into other forms of energy.

1 Newton’s Balls

Actually, there has been a substantial amount of recent exploration of this
question – by philosophers rather than by physicists., These analyses have
pointed out certain difficulties, which can be encapsulated in the classic ele-
mentary demonstration apparatus known as Newton’s balls.

• Pérez Laraudogoitia, J.: A Beautiful Supertask. Mind 105, 81-83
(1996).

• Earman, J. and Norton, J.D.: Comments on Laraudogoitia’s ‘Classical
Particle Dynamics, Indeterminism and a Supertask’. Brit. Jour. Phil.
Sci. 49, 123-33 (1998).

• Pérez Laraudogoitia, J.: Earman and Norton on Supertasks that Gen-
erate Indeterminism. Brit. Jour. Phil. Sci. 50, 137-41 (1999).

Here one places a series of idential masses precisely in a row, and gives the
first mass a velocity v0 toward its nearest neighbor, the others being initially
at rest. After a sequence of collisions, the last mass in the row proceeds off
with velocity v0 in the direction of the initial motion, with all other masses
being at rest.

This demonstration is a classic and concise demonstration of energy and
momentum conservation in classical mechanics. However, what happens if
there is no “last mass”? That is, what occurs if there is an infinite sequence
of masses in the row. Do the energy and the momentum simply disappear
into the continuum of mass?
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2 Zeno Balls

Within a few heartbeats, a physicist might point out that such a system is
“unphysical”, inasmuch as it would require an infinite amount of mass, and

that it would be impossible to align the masses so as to maintain collinearity
of the collisional process, without introducing friction or other dissipative
effects. We will set aside the second objection for the present, since within
the context of classical mechanics there is no intrinsic level of uncertainty or
misalignment implicit in the formalism, and that it should be only a matter
of sufficient care and cleverness to achieve a given level of precision. Does the
requirement of a finite total mass in the system fix the problem? Remarkably,
the answer is NO!
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Figure 1. Collision of an infinite number of progressively smaller balls

Let us consider an infinite sequence of masses (m0, m1, m2, · · ·) aligned
in order along a line, as shown. Suppose further that the mass m0 is given
a velocity v0 toward the first mass m1, which is at rest, along with all the
other masses. After the collision the mass m0 leaves with velocity V0, and the
mass m1 goes forward with velocity v1. The mass m1 strikes the mass m2,
leaving with velocity V1, the mass m2 going forward with velocity v2. This
collisional round continues until all subsequent balls have been undergone
two collisions. The requirements of energy and momentum conservation in
this round of collisions are

mk vk = mk Vk + mk+1 vk+1

1

2
mk v2

k = 1

2
mk V 2

k + 1

2
mk+1 v2

k+1

where k = 0, 1, · · ·. Equivalently, we have

vk =
mk+1 + mk

2mk

vk+1

Vk = vk+1 − vk =
mk − mk+1

mk + mk+1

vk
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Let us write these relations as

vn+1 =
2

1 + µn

vn

Vn =
1 − µn

1 + µn

vn

where µk =
mk+1

mk

Rather complete discussions of these collisional sequences are given in
these references:

• Atkinson, D.: Losing Energy in Classical, Relativistic and Quantum
Mechanics. Stud. Hist. Phil. Mod. Phys. 38, 170-180 (2007).

• Atkinson, D.: A Relativistic Zeno Process. Synthese 160, 5-12 (2008).

• Atkinson, D., and Johnson, P. W.: Nonconservation of Energy and
Loss of Determinism I. Infinitely Many Colliding Balls, Found. Physics
39, 937-957 (2009).

3 Constant Recoil Velocities

Here we shall draw special attention to the case in which all particles recoil
with a common speed; i. e., Vn = V for all n. When this occurs, the
particles move in lock step after the first round of collisions, and there are no
subsequent collisions. In terms of the parameters

αn =
1 + µn

1 − µn

the requirement of a constant recoil speed V may be written as

vn+1 =
2

1 + µn

vn

αn+1 V =
2

1 + µn

1 + µn

1 − µn

V

αn+1 =
2

1 − µn

= 1 +
1 + µn

1 − µn

αn+1 = αn + 1
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There is a one-parameter family of solutions to this latter recursive for-
mula for αn:

αn = λ + n

where the parameter λ > 1 is otherwise arbitrary. The intermediate velocities
are

vn = αn V = (λ + n) V

and the parameter λ may determined from the original velocity of the incident
ball:

λ V = v0

The corresponding mass ratios are

µn =
αn − 1

αn + 1
=

λ + n − 1

λ + n + 1

We may determine the masses themselves:

mn

m0

=
n−1
∏

k=0

µk =
λ (λ − 1)

(λ + n) (λ + n − 1)

Therefore, the total mass of all the balls is

M =
∞
∑

n=0

mn = λ m0

The initial momentum and kinetic energy are given by

Pi = m0 v0

2 Ti = m0 v2

0

and the final values are

Pf = M V = m0 v0

2 Tf = M u2 =
m v2

0

λ
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For this case, as well as for a wide variety of other cases, momentum
is conserved whereas energy has been lost. The intermediate velocities vn

increase with n, and in the limit the intermediate kinetic energy approaches
a non-zero limit:

2 T lost
n = mn V 2

n = m0 u2
λ (λ − 1)

(λ + n) (λ + n − 1)
(λ + n)2 → m0 v2

0

(

1 −
1

λ

)

This amount of energy disappears into the continuum in the process.

4 Completely Inelastic Collision

The case of a common recoil speed can be compared with the completely
inelastic collision of a particle of mass m0 and initial speed v0 with a solid
body of mass M −m that is initially at rest. The two masses coalesce during
the collisions, and afterward the entire system of mass M moves with speed
V . For the collision the momentum is conserved:

m0 v0 = M u

whereas this amount of energy is lost – presumably converted into “heat”.

2 T lost = m0 v2

0 − M u2 = m0 v2

0

(

1 −
1

λ

)

This energy is converted into “heat” in this inelastic process.

The original collision sequence could be interpreted as a microscopic ren-
dition of this corresponding inelastic collision, without the requirement of
“binding forces” to keep the final mass intact. However, it is a mystery as to
how an elastic collisional sequence could possibly mimic an inelastic process.

Note also that the intermediate speeds (λ + n) v become arbitrarily large
at large n.
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5 AB Balls

Suppose that an infinite set of masses {mn}, with finite total mass M is
confined by walls to a one-dimensional region of finite length. Suppose, as
before, that the heaviest particle, with mass m0, initially has speed v0, the
rest of the particles being at rest. Let the particles then collide elastically
with one another, and subsequently bounce elastically off the walls.

This seems like a simple extension of what we have done above, but it is
not. To see this, given the case of constant recoil, let us consider the state
of the system after all the balls have collided with one another, but before
any of them have reached a wall. They are all moving with the same speed
towards the left, and will continue to do so until they hit the leftmost wall.
Or will they? Which ball will strike the wall first? No ball can do so, for if
ball number n were to hit the wall, its neighbor to its left should have struck
the wall first, and this applies to any ball at all.

The inconsistency is identical to the one discussed by Alper and Bridger,
in which an additional ball approaches the point of accumulation of an infinite
set of balls that are all initially at rest. Indeed, by looking at the constant-
recoil scenario from a co-moving frame of reference, we see a wall moving
to the right, approaching the point of accumulation of the positions of an
infinite set of stationary balls: exactly the Alper-Bridger case.

We have advocated a radical way around the impasse, namely that of
embracing Aristotle’s “potential infinity”, in contrast to “actual infinity”.
The distinction is that between the limit of a finite system, as the size grows
without bound, and an infinite system ab initio . A merely potentially infinite
set of balls can consistently undergo collisions with a wall.

• Alper, J.S., Bridger, M.: Newtonian Supertasks: A Critical Analysis.
Synthese 114, 335-369 (1998).

• Atkinson, D. and Johnson, P. W.: Nonconservation of Energy and Loss
of Determinism II. Colliding with an Open Set, Found. Physics 40, 179
(2010).
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