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We have developed an avalanche transistor-based pulse generator for driving the photocathode of an image 

intensifier, which comprises a mainly capacitive load on the order of 100 pF. The circuit produces flat-top pulses 

with rise time of 2 ns, FWHM of 10 ns and amplitude of tens of V at a high repetition rate in the range of tens of 

MHz. The generator is built of identical avalanche transistor sections connected in parallel and triggered in a 

sequence, synchronized to a reference rf signal. The described circuit and mode of operation overcome the power 

dissipation limit of avalanche transistor generators and enable a significant increase of pulse repetition rates. Our 

approach is naturally suited for synchronized imaging applications at low light levels. 

 

Generators of nanosecond-scale pulses of voltage or current 

are used to drive electro-optical devices such as diode lasers 

[1], Pockels cells [2], electro-optical modulators [3], and 

image intensifiers [4]. Bipolar transistors operated in 

avalanche breakdown mode are commonly used to construct 

such generators [1] [4] [5] [6] [7] [8] [9] [10]. 

Individual pulses are specified by parameters such as 

amplitude, duration, rise and fall times. Numerous 

publications deal with ways to increase pulse voltage or 

current amplitudes by connecting multiple avalanche 

transistors in series [2] [5], parallel [1] [5], or in 

configurations such as the Marx bank [2] [4] [8]. Rise and 

fall times are largely determined by intrinsic transistor 

parameters [7] and circuit parasitics [6]. 

The pulse repetition rate is another property of generators 

that plays an important role in some applications. High 

repetition rates of ≥20 MHz have been reported for circuits 

using vacuum tubes [3] and step recovery diodes [11]. One 

limiting factor in avalanche transistor circuits based on the 

basic triggered-switched capacitance-discharge topology 

[1] is the rate at which the energy storage element (lumped 

or distributed capacitance) at the collector can be recharged. 

Higher rates are achievable by replacing the charging 

resistor with a more complex passive [9] [12] or active 

circuit [10]. Eventually, another limitation arises due to 

power dissipation in the transistors. It can be mitigated to 

some extent by heat-sinking, but the pulse rates are still 

practically limited to a few MHz in continuous operation 

[10]. 

The circuit presented in this work (German patent 

application 10 2017 125 386.6 filed on 10/30/2017) (FIG 1) 

overcomes both the recharging and dissipation limits. It is 

based on multiple avalanche transistor sections connected in 

parallel to the same load and triggered sequentially. A 

similar principle for increasing the pulse repetition rate of 

thyratron-based generators has been demonstrated [13], but 

without the provisions for synchronization detailed in our 

work. 

 

FIG 1. Circuit diagram of the pulse generator circuit 

The pulse generator is designed for a specific application: 

driving the photocathode of a fast-gating image intensifier 

[14] for synchronized imaging of the ion micromotion in an 

rf trap [15] at a frequency of about f=25 MHz. Micromotion 

is a generally unwanted driven oscillation which occurs 

whenever a trapped ion is displaced from the rf node. We 

determine its amplitude via the photon-correlation 

technique, which makes use of the fluorescence modulation 

due to the 1st-order Doppler effect on a strongly allowed 

optical transition [16], [17]. 

 



 

 

 

FIG 2. Photograph of the 8-section pulse generator circuit 

The collected fluorescence at f is demodulated by gating the 

image intensifier for a fraction of the rf period, with varied 

delay. We take 4 samples per period, as a compromise 

between the number of detected photons and the reduction 

in contrast due to temporal averaging within the gate time. 

Due to the low number of photons (4 x 10-5 within the 10 ns 

gate time), a repetition rate of f is desirable to minimize 

integration times. Photon shot noise is the major uncertainty 

contribution, and averaging times on the order of about 2 h 

are necessary to resolve micromotion amplitudes to within 

25 pm [18]. In our tests, we operated the circuit for >10 h at 

a time. 

From initial tests with single transistors we determined that 

a maximum repetition rate of ca. 4 MHz per section is 

achievable with forced-air cooling. The realized pulse 

generator (FIG 2) has 8 identical sections. The charge-

storage transmission lines are placed on the bottom side of 

the circuit board, within an enclosure. A strong cooling fan 

is mounted directly above the shown board. We chose not 

to heat-sink the transistors, in order to reduce parasitic 

capacitance added at their case-connected collectors. The 

cooling fan is essential, as the circuit operated continuously 

at full pulse rate dissipates about 20 W. 

We use the widely available transistor 2N2369, which is 

known for its good operation in avalanche mode [6]. In 

order to achieve the same pulse amplitudes from the 

different sections while having a single supply voltage, we 

have manually selected transistors with tightly matching 

breakdown characteristics (threshold voltages matched to 

±0.4 V or 1 %). Voltage amplitudes of several tens of V 

were achieved (FIG 3) with the 2-transistor stack (FIG 1), 

powered with total supply voltage of 100 - 110 V. These 

pulse amplitudes are sufficient for gating the image 

intensifier without appreciable loss of spatial resolution. 

 

FIG 3. Pulse waveforms measured into a 50 Ω load and the high-

impedance (1 MΩ, 16 pF) input of a 4 GSPS sampling oscilloscope 

during continuous operation. 

A degradation of pulse edges occurs due to reflections when 

a reactive load is connected at the output of the generator. 

The effect is particularly evident in the falling edges of 

pulses shown in FIG 3. The photocathode of the image 

intensifier can be seen as a lossy lumped capacitance (C ≈ 

100 pF) at the end of a 100 mm long RG-174 coaxial line, 

which imposes limits on the overall system performance. 

The achievable temporal resolution is optimized by 

applying a +15V reverse bias to the cathode, which repels 

slow photoelectrons generated during the transients and 

optimally exploits the nonlinear dependence of the device 

gain on the cathode voltage. FIG 4 shows a calibration 

measurement of the contrast at f=24.4 MHz, normalized to 

the dc signal. The observed signal is generated by an ion 

undergoing micromotion, the amplitude of which was 

determined before and after with a photomultiplier tube 

(PMT). As the image intensifier measurements consist of 

temporal averages over 1/4 of the signal period, a contrast 

reduction by a factor of 0.9 is expected with respect to the 

PMT signal. No further reduction is seen in the data, 

confirming that the distortion of the applied pulses has no 

adverse effect on the observed signal. 

The photocathode is gated by application of negative 

voltage pulses. The image intensifier we use has built-in 

high-voltage converters for biasing the micro-channel plate 

(MCP) and the photocathode when used in continuous (non-

gated) mode, which permit powering the device from a non-

grounded low-voltage supply. The output of our circuit is 

crossed to invert the polarity of the pulses. A coaxial rf relay 

allows for selecting between the internal dc photocathode 

bias and external gating by the pulse generator.  

We use a Xilinx Spartan-3 XC3S500E-4FG320C FPGA for 

generating the synchronized triggering pulses. The rf signal 

is buffered by a clock-conditioning IC (AD9513) and fed to 

a global clock input of the FPGA. A secondary clock signal 

is generated internally using the built-in digital clock 

manager (DCM) blocks [19] of the FPGA. This secondary 



 

 

clock has an adjustable phase in coarse steps of 90⁰  and 

180⁰ , controllable by digital inputs. Fine adjustment of the 

phase is also implemented by tuning the delay-locked loop 

within the DCM. The secondary clock is used to increment 

a simple ripple counter that produces an 8-phase sequence 

of trigger pulses (bottom traces in FIG 5). The outputs of the 

FPGA are buffered by a CMOS IC (74HC244) with 

adjustable positive supply voltage. This circuit drives two 

equally long Cat-5 Ethernet cables, terminated with their 

characteristic impedance of 100 Ω at the avalanche pulse 

section (FIG 1). 

 

FIG 4. Calibration of the contrast at f = 24.4 MHz using modulated 
fluorescence from an ion undergoing micromotion. A: reference 

measurement using a photomultiplier tube. B: CCD camera measurement 

using the gated image intensifier with an integration time of about 3300 s. 
The image intensifier data has been vertically offset by -0.5 and a technical 

phase offset has been subtracted for clarity. The statistical uncertainty of 
the data points in B. is not shown, as it is smaller than the plot symbols. 

 

FIG 5. Oscilloscope screenshot showing the trigger signals D0-D7 (bottom 

traces), pulse generator output into 50 Ω (middle trace) and 25 MHz rf 
signal (top trace) 

In summary, we have devised a way to increase the pulse 

repetition rate of a generator built of multiple parallel 

avalanche transistor sections, and have demonstrated its 

operation at 25 MHz with a fast-gating image intensifier. It 

is straightforward to extend the presented principle to even 

higher repetition rates by increasing the number of sections 

(cf. FIG. 1). The only practical limitations would arise from 

the increasing circuit size, parasitics and total power 

dissipation. 
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