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Smudge’s Halbach Motor Analysis 
 

1. Introduction 

 

It would seem from my FEMM simulations that my Halbach motor doesn’t work as a 

rotary version.  However there is little doubt that the linear motor version will work 

over the movement range where the magnet is alongside the array.  On that assumption, 

in this paper we look into where the energy comes from.  Clearly it must arise from the 

perpetual motions of the particles that make up the atoms within the magnets, and 

especially the electron orbital motions and spins that account for the permanent 

magnetism.  Here we follow previous practice and account for those perpetual electron 

motions by replacing them with an equivalent surface current flowing around the 

magnet.  Although this surface current doesn’t really exist, treating it as an imaginary 

current in an air-cored solenoid allows us to see how induced voltage into that 

imaginary solenoid either takes energy from or feeds energy back to the current source. 

That current being the combined effect of all the atomic dipoles, those energy 

exchanges then represent energy flow to and from whatever keeps those electrons in 

perpetual motion.  It allows us to see how the forces that control that microscopic inner 

atomic world can be made to give up energy to our macroscopic outer world. 

 

2. Equivalent Surface Current 

 

Nussbaum [1] devotes a whole chapter to the equivalent current concept, but here we 

are only interested in the solenoid equivalent of a permanent magnet.  The following 

image taken from Nussbaum shows the magnetic fields of (a) an air cored solenoid and 

(b) a permanent magnet. 

Figure 1.  Magnetic field from (a) a solenoid and (b) a permanent magnet 

 

It is seen that the fields are identical showing that the equivalent surface current concept 

is a valid method for calculating the field from a magnet.  But is goes further than that.  

We now allow the equivalent solenoid to do some work, like pick up a lump of 

permeable material against gravity.  The work done is then mgh as shown in Figure 2.  

Now ignoring any copper loss in the coil (we could use super-conducting material) the 
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source supplying the coil current I will see an induced voltage V due to the increasing 

field within the coil as the permeable material rises.  That voltage represents a load on 

the current source, the source supplies energy, and the VI power supplied over the time t 

is energy equivalent to mgh.  

 

Figure 2.  Solenoid doing work 

 

Thus we have a full accounting for the work done, there is no free energy, our current 

source supplies that energy. 

 

Now when we consider a permanent magnet doing the same work, it is a valid question 

to ask where the energy comes from. 

 

Figure 3.  Magnet doing the same work 

 

 The magnet will also see an increasing internal field as the permeable material rises, 

and that will induce voltage into the atomic electron circulations, or rather will induce E 

field vortices that apply forces to the moving electron charges.  Those forces will load 
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the electron circulations attempting to slow them down, which of course can’t happen.  

Whatever is driving those perpetual motions is the source of the energy.  Now since the 

current I in the equivalent solenoid represents the net effect of all those atomic electron 

circulations, then the voltage V induced into that equivalent solenoid over the time t 

yields the energy supplied from that inner atomic world.  Here we have a means for 

examining a magnetic motor, placing imaginary coils around each magnet, and seeing 

where energy is extracted from the atomic domain and where energy is fed back.  We 

can analyse in detail these energy flows, but more importantly we have a method for 

evolving motor concepts that will work. 

 

3. Analysing the modified Halbach motor. 

 

It is instructive to follow how the standard Halbach array creates fields that are 

essentially to only one side of the array.  Figure 4 shows separately in simplified form 

the fields that emanate from the transverse magnets in red and the fields from the axial 

magnets in blue.  (Note that we show the magnets as solenoids, the reason for this will 

become clear later).  It is clear that on one side of the array the two fields cancel while 

on the other side they add. 

 

Figure 4.  Showing separate fields from transverse and axial magnets. 

 

The resultant fields are shown in simplified form in the next figure. 

 

 

Figure 5.  Resultant field for standard Halbach array. 

 

In the modified Halbach array alternate axial magnets are reversed so that all the axial 

magnets point in the same direction.  Hence for those reversed magnets the adjacent 

field addition and cancellation regions swap sides, resulting in the fields shown in 

Figure 6. 
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Figure 6.  Separate fields for the modified Halbach array. 

 

We then get the simplified fields as depicted in Figure 7. 

 

 

Figure 7.  Resultant field of modified Halbach array. 

 

Here we see that on each side of the array all the field regions point in the same 

direction.  It is this feature that allows a magnetic pole travelling alongside the array to 

receive positive accelerating force impulses with little or no intermediate decelerating 

forces impulses.  

 

4. Energy exchange with the magnets. 

 

We wish to examine the voltages induced into our imaginary coils around each magnet.  

There are two forms of induction, (a) induction by the time-changing field within the 

magnet and (b) motional induction due to magnetic flux lines crossing the conductors.  

Since we are dealing with moving magnets we must not neglect (b), and that has some 

surprising results.  First let us consider a long solenoid with a magnetic pole moving 

along its centre line, driven by the internal field, Figure 8.  The radial field lines all cut 

the conductors so as to induce a voltage there, so the coil will see a unidirectional pulse 

as the pole passes through it.  Note that the direction of the induced electric field by 

Fleming’s RH rule (the BvE ×=  motional induction) opposes the current drive, thus 

applying a load to the current source.  The kinetic energy gained by the moving pole is 

accounted for by the energy extracted from the current source.  Of course this circular 

induction is well known as demonstrated by the often repeated experiment of dropping a 

magnet through a vertical copper pipe where the N and S poles each induce circular 

eddy current around the pipe, Figure 9.   Here the currents induced into the pipe create 

their own magnetic field that applies a force to the magnet opposing its motion. 
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Figure 8.  Pole moving within solenoid     Figure 9.  Magnet falling through tube 

 

The question to be asked now is “will a magnetic pole passing along the outside of a 

solenoid induce voltage into the coil?”  The answer is yes, see the derivation in the 

Annex.  Figure 10 shows this situation where now the pole is now driven by the external 

field (in the opposite direction to the internal field).  The direction of the induced 

voltage again loads the current source fully accounting for the kinetic energy gained by 

the moving pole. 

Figure 10.  Pole moving alongside a solenoid. 

 

With that knowledge we can look at a magnetic N pole travelling alongside the array of 

Figure 7, and we can see how its field has components along each solenoid’s axis and 

how that field is changing with time.  That tells us the polarity of the voltage induced 
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into the solenoidal coil, and that tells us whether the voltage loads or feeds energy back 

to the current source.  We initially consider the movement from magnet A to magnet C 

where the pole is receiving an accelerating force, Figure 11.  Initially magnet A sees a 

field from the N pole that opposes its own field and that opposing field reduces as the 

pole moves away.  Initially axial magnet B also sees a field component that opposes its 

own field and that opposing field also reduces until the pole reaches the mid position as 

illustrated when the component changes to an increasing supporting field.  Alternatively 

we can deduce the induction in magnet B from the pole movement.  Magnet C sees an 

increasing field component supporting its own field.  In all three cases the voltage 

induced into the imaginary solenoids is of a polarity to load the current sources, the 

sources all give up energy that accounts for the mechanical work done by the moving 

pole. 

  

Figure 11.  Pole receiving accelerating force 

 

Next we look at the pole moving from C to E where it receives little or no decelerating 

force. 

 

Figure 12.  Pole receiving little force 

 

As before the axial magnet D is giving up energy, but the transverse magnets C and D 

see changing field components that are of a polarity to feed energy back to the current 

sources.  If magnet D had a reversed magnetization (as in the standard Halbach array) 

then all three magnets C, D and E would be receiving energy supplied by the moving 

pole, and the pole would have to do work to supply that energy equivalent to the energy 

gained previously.  In this modified array magnet D is supplying energy that doesn’t 

reach the pole, it gets absorbed by magnets C and E. and that accounts for the reduced 

counter force on the pole in this region.   Taking the two movements together the net 

result is a unidirectional force where the work done is fully accounted for by energy 

supplied from the atomic current circulations (atomic dipoles) within the magnets. 
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5. Conclusion 

 

By considering the atomic dipoles responsible for permanent magnetism as tiny current 

loops, where induction from the field passing though or passing by each loop can either 

load (extract energy from) or feed energy back to the loop driving force, we obtain a full 

reconciliation for the energy supplied to a magnetic pole moving alongside a modified 

Halbach array.  The same approach can be used to reconcile the apparent free energy 

obtained from other known forms of magnetic motor.  In all cases each atomic dipole 

within the permanent magnets can be considered as a form of quantum dynamo, where 

the power is obtained from whatever keeps those electrons moving or spinning.  

Induction into those atomic current loops or circulations follows classical known 

principles of motional and transformer induction, albeit over tiny loop areas.  The 

equivalent surface-current concept, where each magnet is replaced by an imaginary 

solenoid carrying that surface-current, and where the induced voltage can be deduced 

from the field movements, allows each magnet to be analysed to see how the atomic 

dipoles there supply or extract energy.  This simple approach takes the mystery out of  

how and why magnetic motors work, demonstrates the source of the anomalous energy 

and should allow for better magnetic motor design. 
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Annex 1. 

 

 

Figure A1.  Magnetic pole passing by a current loop. 

 

Figure A1 shows a circular loop or radius R with a magnetic N pole of magnitude QM 

outside the loop and at a distance x from it.  Taking a small element δR at an angle θ we 

obtain the B field magnitude at that point as 

 24 d

Q
B M

π
=        (1) 

By the cosine rule d
2
 is given by 

 θcos)(2)( 222
xRRxRRd +−++=   (2) 

The pole movement (into the paper) at velocity v gives rise to an Eθ field component 

along δR directed as depicted in the figure, of magnitude 

φθ cosvBE =       (3) 

By the sine rule 
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The voltage induced into the element δR is EθδR and the total voltage induced into the 

loop is 

 ∫=
π

θ θ
0

.2 dREV       (5) 

To avoid my 87 year old brain from damage in trying to solve the full integral I did this 

in MS Excel summing the voltage increments EθδR for ½ degree increments.  The result 

is clearly non zero as the positive voltage induced into the elements closest to the pole 

far exceeds the negative voltage induced into the elements furthest from the pole. 

 

A magnet moving along the outside of an infinitely long solenoid will induce voltage 

that cannot be accounted for by flux change (transformer induction), but is accounted 

for by flux cutting (motional induction).    
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