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1 Problem

An ongoing challenge in electrical engineering is the design of antennas whose size is small
compared to the broadcast wavelength λ. One difficulty is that the radiation resistance of
a small antenna is small compared to that of the typical transmission lines that feed the
antenna,1 so that much of the power in the feed line is reflected off the antenna rather than
radiated.

The radiation resistance of an antenna that emits dipole radiation is proportional to
the square of the peak (electric or magnetic) dipole moment of the antenna. This dipole
moment is roughly the product of the peak charge times the length of the antenna in the
case of a linear (electric) antenna, and is the product of the peak current times the area
of the antenna in the case of a loop (magnetic) antenna. Hence, it is hard to increase the
radiation resistance of small linear or loop antennas by altering their shapes.2

One suggestion for a small antenna is the so-called “crossed-field” antenna [2]. Its pro-
ponents are not very explicit as to the design of this antenna, so this problem is based on a
conjecture as to its motivation.3

It is well known that in the far zone of a dipole antenna the electric and magnetic fields
have equal magnitudes (in Gaussian units), and their directions are at right angles to each
other and to the direction of propagation of the radiation. Furthermore, the far zone electric
and magnetic fields are in phase. The argument is, I believe, that it is desirable if these
conditions could also be met in the near zone of the antenna.

The proponents appear to argue that in the near zone the magnetic field B is in phase
with the current in a simple, small antenna, while the electric field E is in phase with the
charge, but the charge and current have a 90◦ phase difference. Hence, they imply, the
electric and magnetic fields are 90◦ out of phase in the near zone, so that the radiation
(which is proportional to E× B) is weak.

The concept of the “crossed-field” antenna seems to be based on the use of two small
antennas driven 90◦ out of phase. The expectation is that the electric field of one of the
antennas will combine with the magnetic field of the other to produce radiation that is much
more powerful than that from either of the two antennas separately.

1A center-fed linear dipole antenna of total length l � λ has radiation resistance Rlinear = (l/λ)2 197 Ω,
while a circular loop antenna of diameter d � λ has Rloop = (d/λ)4 1948 Ω. For example, if l = d = 0.1λ
then Rlinear = 2 Ω and Rloop = 0.2 Ω.

2That there is little advantage to so-called small fractal antennas is explored in [1].
3A variant based on combining a small electric dipole antenna with a small magnetic dipole (loop)

antenna [3] is discussed in Appendix D.
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If suffices to consider two small linear dipole antennas, say of lengths 2a � λ and 2b � λ,
as shown in the figure below. Discuss the dependence of the total power radiated by the two
antennas as a function of a, b, and the drive currents Iae

−iωt in antenna a and Ibe
−i(ωt+φ) in

antenna b.

A variant of the “crossed-field” antenna is the so-called “EH” antenna [4, 5],4 which is
a short, linear dipole antenna in which the currents in the two arms are driven 90◦ out of
phase.5 Discuss the power radiated by this antenna.

An important aspect of practical antennas is the behavior of the feed line between the rf
power source and the antenna. Ideally this is a two-wire transmission line, such as a coaxial
cable, that carries equal and opposite currents on the two wires. Then the radiation from the
currents in the two wires cancels and the feed line can be ignored when discussing radiation
by the antenna itself.

The pair of dipole antennas that comprise the “crossed-field” antenna can be operated
with their drive currents 90◦ out of phase simply and precisely by connecting them to a pair
of coaxial cables from a single rf power source such that one cable is λ/4 longer than the
other. Then each coaxial cable operates as an ideal, nonradiating transmission line and these
lines can be neglected in an analysis of the radiation.6

However, an “EH” antenna cannot be driven by a single, nonradiating transmission line
in which the currents on its two conductors are opposite rather than 90◦ out of phase.

4Reference [4] also discusses the so-called “Hz” antenna which consists of a pair of small, loop antennas
placed side by side and driven 90◦ out of phase. The behavior of this antenna pair is essentially the same as
that of a “crossed-field” antenna and need not be discussed separately.

5In one definition of the EH antenna [6], it is recommended that the antenna include “tuning” coils such
that when the system is considered as two-terminal device, the applied voltage would be exactly 90◦ out of
phase with the current. Since this implies that the system would draw zero power, you need not consider
this suggestion further.

6If “crossed-field” antennas had been driven in this manner, the controversy as to their performance
might have been settled long ago.
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As shown in the figure below, suppose that a small phase shift network is installed in the
transmission line at a distance d ≈ λ/4 from the feed points of an “EH” antenna, such that
over the length d the current in one conductor is Iae

−iωt and that in the other conductor
is −iIae

−iωt (where currents in the figure are positive when flowing to the right and when
flowing upwards).

Deduce the contribution to the radiation from the currents in this feed line.
Another aspect of practical reality is that antennas are mounted close to the Earth’s

surface, which acts like a perfectly conducting ground plane to a reasonable approximation.
Discuss the effect of this ground plane on the behavior of the “crossed-field” and “EH”
antennas.

2 Solution

2.1 The “Crossed-Field” Antenna

We recall that the time-averaged power P radiated by an antenna system with total electric
dipole moment p = p0e

−iωt is

P =
|p̈|2
3c3

=
ω4 |p0|2

3c3
. (1)

For completeness, we deduce the dipole moment of a center-fed linear antenna of length
2a. We take the conductors to be along the z-axis, with the feed point at the origin. The
current at the feed point is Iae

−iωt, but it must fall to zero at the tips of the antenna z = ±a.
When a � λ the current distribution can only have a linear dependence on z, so its form
must be7

I(z, t) = Iae
−iωt

(
1 − |z|

a

)
. (2)

7Strictly speaking, only the current that is in phase with the drive current must have the form (2). There
actually exists a small current that is 90◦ out of phase with the drive current, and which vanishes at z = 0
as well as z = ±a. This current is needed to provide some additional electric field in the near zone such
that the tangential component of the total electric field vanishes along the (good) conductors. However, this
current does not affect the radiated power, and may be neglected in the present discussion.
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The charge distribution �(z, t) = ρ(z)e−iωt along the antenna can be deduced from the
current distribution (2) using the equation of continuity (i.e., charge conservation), which
has the form ∂I/∂z = −∂�/∂t = iωρ(z)e−iωt. Thus,

ρ(z) = ± iIa

ωa
. (3)

The electric dipole moment pa is therefore

pa(t) =
∫ a

−a
zρ(z)e−iωt dz =

iIaa

ω
e−iωt. (4)

Similarly, the electric dipole moment of antenna b, whose current is Ibe
−i(ωt+φ), is

pb(t) =
iIbb

ω
e−i(ωt+φ). (5)

The total electric dipole moment for the two antennas of the present example is

p(t) = i
Iaa + Ibbe

iφ

ω
e−iωt ≡ p0e

−iωt. (6)

The total (time-averaged) power radiated by the “crossed-field” antenna is, using eq. (1),

P =
ω4 |p0|2

3c3
=

ω2

3c3
(I2

aa
2 + I2

b b
2 + 2IaaIbb cos φ) = Pa + Pb + 2

√
PaPb cosφ, (7)

where Pa and Pb are the powers that would be radiated by each antenna in the absence of
the other.

2.2 The “EH” Antenna

We take the total length of the antenna to be 2a along the z-axis. The drive current is
assumed to have the form

I(z, t) = Iae
−iωt

(
1 − |z|

a

)⎧⎪⎨
⎪⎩

1 (0 < z < a),

i (−a < z < 0),
(8)

which incorporates a 90◦ phase difference between the currents in the two arms of the an-
tenna. Comparing with eq. (3), we see that the distribution of charge along the antenna has
the form

ρ(z) =
Ia

ωa

⎧⎪⎨
⎪⎩

i (0 < z < a),

1 (−a < z < 0).
(9)

The electric dipole moment pa of the antenna is therefore

pa(t) =
∫ a

−a
zρ(z)e−iωt dz =

Iaa

2ω
(1 + i)e−iωt ≡ p0e

−iωt (10)

The time-averaged power radiated by the “EH” antenna is, using eq. (1),

P =
ω4 |p0|2

3c3
=

ω2a2I2
a

6c3
=

Pa

2
, (11)

where Pa = ω2a2I2
a/3c

3 is the power that would be radiated if the two arms of the antenna
were driven in phase.
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2.3 Radiation from the Feed Line to the “EH” Antenna

When a feed line contains “unbalanced” currents, as specified in the “EH” antenna scheme,
there is radiation from the feed line as well as from the antenna proper. When an “unbal-
anced” feed line is long compared to the size of the antenna, the radiation from the feed line
is much larger than that of the antenna proper. Here, we deduce the radiation from the feed
line shown in the figure on p. 3.

We take the lower conductor of the feed line to be the inner conductor of the coaxial
cable. Then, the current on the inner conductor is −iIae

i(kz−ωt), where k = 2π/λ = ω/c, and
the feed line is taken to lie along the z-axis.8 Anticipating further analysis in the following
section, we suppose the feed line is vertical and extends from z = 0 up to z = d.

Accompanying the current on the inner conductor is a current iIae
i(kz−ωt) on the inside of

the outer conductor. These equal and opposite currents are associated with the transverse
electromagnetic wave (TEM) that propagates inside the coaxial cable. These two current do
not directly produce any radiation in the far zone.9

In addition, there is a current Ioe
i(kz−ωt) that flows on the outside of the outer conductor.

The radiation from the feed line is due to this current.
Since the total current on the outer conductor is Iae

i(kz−ωt), we have that

Ioe
i(kz−ωt) = Iae

i(kz−ωt) − (iIae
i(kz−ωt)) = (1 − i)Iae

i(kz−ωt). (12)

The radiating current (12) extends over a distance d that is not small compared to a
wavelength. In this case, an accurate calculation of the radiation should go beyond the
dipole approximation. Fortunately, there is an “exact” prescription for the (time-averaged)
angular distribution of radiation in the far zone from a specified time-harmonic current
distribution [7],

dP

dΩ
=

ω2

8πc3

∣∣∣∣k̂ ×
[
k̂ ×

∫
J(r, t)e−ik·r dVol

]∣∣∣∣2 . (13)

In the present problem J(r, t) dVol → Ioe
i(kz−ωt) ẑ dz. For a far-zone observer at angles (θ, φ)

in a spherical coordinate system, the unit vector k̂ is given by

k̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ. (14)

Combining eqs. (12)-(14), we have

dP (θ, φ)

dΩ
=

ω2I2
a

4πc3
sin2 θ

∣∣∣∣∣
∫ d

0
eikz(1−cos θ) dz

∣∣∣∣∣
2

=
ω2I2

ad
2

4πc3
sin2 θ

[
sin kd

2
(1 − cos θ)

kd
2
(1 − cos θ)

]2

. (15)

The factor in eq. (15) in brackets represents the departure of the radiation pattern from that
of an ideal dipole, due to the finite length d of the feed line. The factor is 1 for θ = 0◦ and
180◦ for any value of d. At θ = 90◦ the (factor)2 is 0.81 for d = λ/4 and 0.41 for d = λ/2.

8The speed of light inside the coax is in general less than c, the speed of light in vacuum. We ignore this
detail in the present analysis.

9The TEM wave inside the coaxial feed line transfers power from the rf source to the antenna, the flow
of which is described by the (time-averaged) Poynting vector. Some of the power inside the coax cable is
“radiated” into the far zone, and lines of the Poynting vector in the far zone are direct continuations of lines
of the Poynting vector inside the cable. From the perspective of power flow, the antenna structure, along
with the coaxial feed line, merely “guides” the transmission of rf power from the source into the far zone.
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The radiation pattern (15) is generated by the traveling-wave current of eq. (12), and
which is sometimes called the “Beverage” antenna pattern (US patent 1,381,089, June 7,
1921) [8]. Typical “Beverage” antennas are several wavelengths long to increase their direc-
tivity (along the direction of the traveling wave).

For comparison, the radiation pattern of a center-fed linear dipole antenna of total length
d is

dP (θ, φ)

dΩ
=

I2

2πc

[
cos(kd

2
cos θ) − cos kd

2

sin kd
2

sin θ

]2

. (16)

At θ = 90◦ the square of the factor in brackets in eq. (16) is 0.09 for d = λ/4 and 1.0 for
d = λ/2. For d < λ/2, the radiation pattern of the “EH” feed line is more strongly peaked
in the equatorial plane than is the pattern of a center-fed linear antenna.

We can integrate eq. (15) over angles to obtain the total (time-averaged) power radiated
by the “EH” feed line, but there is no simple analytic result. As an approximation, we ignore
the factor in brackets, which gives10

P =
∫

dP (θ, φ)

dΩ
dΩ ≈ 2ω2d2I2

a

3c3
. (17)

When d � a this is large compared to the power Pa = ω2a2I2
a/6c

3 radiated by the arms of
the antenna, as found in eq. (11). Hence, with the phase shift network located at a distance
d � a from the antenna, as recommended in [5], most of the radiation of an “EH” antenna
actually comes from the feed line between the phase shift network and the antenna, rather
than from the antenna itself.11

2.4 Effects of the “Ground” Plane

The discussion thus far has presumed that the antennas are located in free space, far from
any other conductors. But in many cases antennas are arrayed a small distance above the
surface of the Earth, which acts like an ideal ground plane to some approximation.

Then, all charges in the system can be thought of as having “image” partners of the
opposite sign located at distances underground equal to the heights of the actual charges
above ground. The oscillating “image” charges create radiation (actually due to currents on
the surface of the Earth), that interferes with the radiation from the nominal antenna.

One option is to build only one, vertical arm of an antenna, and connect the “return”
conductor of the feed line to “ground” directly below that single arm. Then the “image”
of the single arm acts like the second arm of a dipole antenna, whose behavior is like that
of the antennas modeled here to the extent that the Earth is a perfect conductor. The
“crossed-field” antenna of [2] is based on a single physical arm plus “image” arm. Hence, its
behavior is reasonably well modeled by the analysis of sec. 2.1.

The “EH” antenna of [5] is stated to be mounted with its center at distance d = λ/8-
λ/4 above the Earth’s surface. The dipole moment of the charges on the conductor of the

10Equation (17) is obtained in the approximation that the length d of the feed line is small compared to
the wavelength λ. In this approximation the current Ioe

−iωt has no spatial dependence. Then, no charge
accumulates along the feed line itself. Rather, charges ±Q = ±iIo/ω accumulate at the two ends of the feed
line. The electric dipole moment of these charges is Qd, from which eq. (17) could also be obtained.

11An empirical study of radiation from the feed line of an “EH” antenna is given in [9].
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antenna has an “image” dipole of the opposite sign located at distance d underground. The
radiation patterns of the antenna dipole and its “image” interfere constructively if d = λ/4
[10], but the radiation from the antenna dipole is negligible compared to that from the feed
line if d � a.

Presumably the phase shift network is on the ground at the base of the antenna tower,
such that the feed line runs upwards from z = 0 to z = d. The current Ioe

i(kz−ωt) on the
outside of the feed line creates an “image” current of the same form. That is, the “image”
of an upward moving positive charge is a downward moving negative charges, and both of
these motions corresponds to upward currents. The (time-averaged) radiation pattern of the
feed line plus its image can be calculated as in eq. (15),

dP (θ, φ)

dΩ
=

ω2I2
a

4πc3
sin2 θ

∣∣∣∣∣
∫ d

−d
eikz(1−cos θ) dz

∣∣∣∣∣
2

=
ω2I2

ad
2

πc3
sin2 θ

[
sin(kd(1 − cos θ))

kd(1 − cos θ)

]2

. (18)

The total (time-averaged) radiated power, neglecting the factor in brackets, is approximately

P ≈ 8ω2d2I2
a

3c3
≡ I2

a

2
Rrad , (19)

where the radiation resistance is

Rrad =
16ω2d2

3c3
=

64π2d2

3λ2c
≈ 6300

d2

λ2 Ω, (20)

noting that 1/c = 30 Ω. For d = λ/8 the radiation resistance is about 100 Ω.
The length a of the conductors of the “EH” antenna plays no role in this result, and

these conductors could be shortened to zero length with no change in the performance of the
system, whose radiation is due to the feed line, and the antenna itself.

3 Comments

Equation (7) tells us that a “crossed-field” antenna pair would actually work better if both
antennas were driven in phase than if they are driven 90◦ out of phase (φ = 90◦) as recom-
mended by its proponents. Similarly, eq. (11) tells us that an “EH” antenna would work
better if both arms of the antenna were driven in phase and if the phase shift network were
located at the feed point of the antenna.

Sections. 2.3 and 2.4 show that when the phase shift network of an “EH” antenna is
located on the ground but the antenna is mounted at height d, radiation from the feed line
becomes more important than that from the nominal antenna, and the effective length of
the antenna is 2d rather than the length a of the nominal arms of the antenna. In this case,
the “EH” antenna is better described as a traveling-wave antenna of the type introduced by
Beverage in 1921 [8].

A single linear dipole antenna actually satisfies the desiridata of a “crossed-field” antenna.
From Appendix A, which is based on work by Kliatzkin in 1927 [11], we see that the radiation
fields can be identified in the near zone of a simple linear antenna, where the magnitudes of
the electric and magnetic radiation fields are essentially equal, and they are in phase. Adding
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a second antenna and varying its phase difference with respect to the first does NOT improve
the quality of the system as an antenna.12 Changing the shape of the antenna helps only
to the extent that it increases the electric dipole moment while keeping the overall antenna
size fixed.

In Appendix B we discuss how the electric and magnetic fields of a short, linear antennas
would by very different if the “displacement current” could be neglected. It is sometimes
said that the main effect of “displacement current” is to produce radiation, which is a small
effect in the near zone of a system. But to the contrary, the “displacement current” has a
large effect on the nonradiation part of the fields in the near zone, especially in situations
where radiation is produced, so that it is a very poor strategy to neglect the “displacement
current” in an attempt to gain a quick understanding of the near fields. In particular, the
electric and magnetic fields have in-phase components in the near zone (in examples like the
present) when the “displacement current” is included, while they would be 90◦ out of phase
if the “displacement current” could be neglected.

Appendix C presents general expressions for the electric and magnetic fields of a specified
set of charge and current distributions. These forms give an additional perspective as to how
the inclusion of the “displacement current” in Maxwell’s equations leads to expressions that
can be thought of as retarded static fields, plus radiation fields, plus a third term in the
electric field that is significant close to the source. The radiation fields have the character of
“crossed fields” both near to and far from the source.

A Appendices

A.1 Appendix A: Near Fields of a Linear Dipole Antenna

This Appendix reproduces results from sec. 2.3 of [12] as to the near fields of a linear dipole
antenna of length 2a, as shown in the figure below, with an assumed current distribution

I(z, t) = I0 sin[k(a − |z|)] cosωt, (21)

which is not normalized: I(z = 0) = I0 sin ka cos ωt.

12There is some technical interest in an antenna composed of two linear antenna at right angles to one
another, and driven 90◦ out of phase. This so-called “turnstile” antenna produces circularly polarized
radiation. See, for example, sec. 3 of [13].
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The electric and magnetic fields can be calculated from the retarded vector potential,
which has only a z-component in this example,

Az(x, t) =
1

c

∫ a

−a
dz′ I(z′, t′ = t− R/c)

R
=

I0e
−iωt

c

∫ a

−a
dz′ sin sin[k(a − |z′|)]e

ikR

R
, (22)

where k = 2π/λ = ω/c and R = |x − x′|. Then, the fields E and B are related by13

B = ∇× A, and

[
i

kc

∂E

∂t
=

]
E =

i

k
∇× B. (23)

We evaluate the field components in a cylindrical coordinate system (ρ, φ, z) to find for
a small antenna with ka � 1,

Bρ = 0, (24)

Bφ = −Re

{
iI0e

−iωt

cρ

[
eikr1 + eikr2 − 2eikr0

(
1 − k2a2

2

)]}
(25)

=
I0

cρ

[
sin(kr1 − ωt) + sin(kr2 − ωt) − 2

(
1 − k2a2

2

)
sin(kr0 − ωt)

]
, (26)

Bz = 0, (27)

Eρ = −Re

{
iI0e

−iωt

cρ

[
(z − a)eikr1

r1
+

(z + a)eikr2

r2
− 2

zeikr0

r0

(
1 − k2a2

2

)]}
(28)

=
I0

cρ

[
(z − a)

sin(kr1 − ωt)

r1
+ (z + a)

sin(kr2 − ωt)

r2
− 2z

(
1 − k2a2

2

)
sin(kr0 − ωt)

r0

]
,(29)

Eφ = 0, (30)

Ez = Re

{
iI0e

−iωt

c

[
eikr1

r1
+

eikr2

r2
− 2

eikr0

r0

(
1 − k2a2

2

)]}
(31)

13We note that the sequence of calculations in eqs. (22) and (23) could be interpreted as implying that the
conduction current I leads to the vector potential and the magnetic field, and then the curl of the magnetic
field leads to the “displacement current” (1/4π)∂E/∂t.
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= −I0

c

[
sin(kr1 − ωt)

r1
+

sin(kr2 − ωt)

r2
− 2

(
1 − k2a2

2

)
sin(kr0 − ωt)

r0

]
. (32)

For completeness, we also display the field components in a spherical coordinate system
(r, θ, φ), noting that ρ = r0 sin θ,

Br = 0, (33)

Bθ = 0, (34)

Bφ = −Re

{
iI0e

−iωt

cr0

[
eikr1 + eikr2 − 2eikr0

(
1 − k2a2

2

)]
sin θ

}
(35)

=
I0

cr0

[
sin(kr1 − ωt) + sin(kr2 − ωt)− 2

(
1 − k2a2

2

)
sin(kr0 − ωt)

]
sin θ, (36)

Er = Re

{
iaI0e

−iωt

cr0

[
eikr1

r1
− eikr2

r2

]}
(37)

= −I0a

cr0

[
sin(kr1 − ωt)

r1

− sin(kr2 − ωt)

r2

]
, (38)

Eθ = −Re

{
iI0e

−iωt

cr2
0 sin θ

[
(r2

0 − az)eikr1

r1
+

(r2
0 + az)eikr2

r2
− 2r0e

ikr0

(
1 − k2a2

2

)]}
(39)

=
I0

cr2
0 sin θ

[
(r2

0 − az)
sin(kr1 − ωt)

r1
+ (r2

0 + az)
sin(kr2 − ωt)

r2

−2r0

(
1 − k2a2

2

)
sin(kr0 − ωt)

]
. (40)

Eφ = 0, (41)

The radiation fields can be found by going to the far zone, where r = r0 ≈ r1 ≈ r2. In
spherical coordinates the only nonzero components to the radiation fields are14

Bφ = Eθ = −Re

{
iI0k

2a2

c

ei(kr0−ωt)

r0
sin θ

}
=

I0k
2a2

c

sin(kr0 − ωt)

r0
sin θ. (42)

The radiation fields depend on the square of the small quantity ka, which permits us to
identify the radiation fields in the near zone, where they are only a small part of the total
fields. Close to the antenna, where rj � a we have cos(krj) ≈ 1 and sin(krj) ≈ krj for
j = 0, 1, 2. The nonzero field components in cylindrical coordinates close to the antenna are
therefore,

Bφ(rj � a) ≈ I0

cρ

[
k(r1 + r2 − 2r0) cos(ωt) − k2a2 sin(ωt)

]
, (43)

Eρ(rj � a) ≈ − I0

cρ

[
z − a

r1
+

z + a

r2
− 2z

r0

(
1 − k2a2

2

)]
sin(ωt), (44)

Ez(rj � a) ≈ I0

c

[
1

r1
+

1

r2
− 2

r0

(
1 − k2a2

2

)]
sin(ωt). (45)

14Verification that eqs. (39) and (40) become eq. (42) in the far zone is a bit subtle. See [12].
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Close to the antenna all of the electric field varies as sin(ωt), and so is 90◦ out of phase with
the drive current. The largest part of the magnetic field is in phase with the current, but
the radiation part of the magnetic field (which includes the factor k2a2) is 90◦ out of phase
with the current, and is therefore in phase with the electric field. Furthermore, the radiation
parts of the electric and magnetic field have very similar magnitudes close to the antenna,
even though the total electric field is much larger than the total magnetic field here.

Thus, a single, short linear dipole antenna has radiation fields in its near zone that are
similar in character to the radiation fields in the far zone: Erad ≈ Brad in magnitude an phase,
and directed at right angles to one another. A single short linear antenna IS a “crossed-field”
antenna.

A.2 Appendix B: Fields with Neglect of the Displacement Current

It may be instructive to deduce the electric and magnetic fields for a short linear antenna
when the displacement current, (1/4π)∂E/∂t, is neglected. In this case, Maxwell’s equations
are

∇ · E = 4π�, ∇ × E = −1

c

∂B

∂t
, ∇ · B = 0, and ∇ × B =

4π

c
J. (46)

These equations can by satisfied by

E = −∇Φ − 1

c

∂A

∂t
, B = ∇ × A, (47)

where the scalar potential Φ and the vector potential A are calculated using present quan-
tities,

Φ(x, t) =
∫

�(x′, t)
R

dVol′, A(x, t) =
1

c

∫
J(x′, t)

R
dVol′. (48)

Of course, this implies that changes in the charge or current distribution cause instantaneous
changes in the potentials and fields.

Recalling eqs. (2) and (3) for the charge and current distributions along the antenna,

�(z < |a| , t) = ± iI0e
−iωt

aω
I(z < |a| , t) = I0e

−iωt

(
1 − |z|

a

)
, (49)

we see that the scalar potential Φ is 90◦ out of phase with the vector potential A. The time
derivative ∂A/∂t is 90◦ out of phase with A, and hence is in phase with Φ. Then, eq. (47)
indicates that the electric and magnetic fields are 90◦ out of phase throughout all space, IF
the “displacement current” is neglected.

In detail, we find in cylindrical coordinates that

Φ(ρ, φ, z, t) = Re
iI0e

−iωt

aω

⎛
⎝∫ a

0

dz′√
ρ2 + (z − z′)2

−
∫ 0

−a

dz′√
ρ2 + (z − z′)2

⎞
⎠

=
I0

aω
sin(ωt)

{
ln
[√

ρ2 + (z − a)2 − (z − a)
]

+ ln
[√

ρ2 + (z + a)2 − (z + a)
]

−2 ln
[√

ρ2 + z2 − z
]}

, (50)
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and

Az(ρ, φ, z, t) = Re
I0

c
e−iωt

⎛
⎝∫ a

0

(1 − z′/a) dz′√
ρ2 + (z − z′)2

+
∫ 0

−a

(1 + z′/a) dz′√
ρ2 + (z − z′)2

⎞
⎠

=
I0

c
cos(ωt)

{(
1 − z

a

)
ln
[√

ρ2 + (z − a)2 − (z − a)
]

−
(
1 +

z

a

)
ln
[√

ρ2 + (z + a)2 − (z + a)
]
+

2z

a
ln
[√

ρ2 + z2 − z
]

−1

a

[√
ρ2 + (z − a)2 +

√
ρ2 + (z + a)2 − 2

√
ρ2 + z2

]}
. (51)

Far from the antenna the potentials (50) and (51) simplify to the forms

Φ ≈ I0a

ω

z

r3
0

sin(ωt), and Az ≈ I0a

r0c
cos(ωt). (52)

The scalar potential is that of a dipole consisting of charges ±iI0/ω separated by distance
a, and the vector potential is that due to a length a of current I0, with both potentials
oscillating at frequency ω.

The magnetic field again has only a φ component, but now it varies only as cos(ωt),

Bφ = −∂Az

∂ρ
=

ρI0

ac
cos(ωt)

[
1

r1 − (z − a)
+

1

r2 − (z + a)
− 2

r0 − z

]

≈ I0a sin θ

r2
0c

cos(ωt), (53)

where the approximation holds for r0 � a. The ρ component of the electric field is

Eρ = −∂Φ

∂ρ
= −ρI0

aω
sin(ωt)

[
1

r1(r1 − (z − a))
+

1

r2(r2 − (z + a))
− 2

r0(r0 − z)

]

≈ 3I0a cos θ sin θ

ωr3
0

sin(ωt), (54)

and z component of the electric field is

Ez = −∂Φ

∂z
− 1

c

∂Az

∂t
=

I0

aω
sin(ωt)

{
1

r1

+
1

r2

− 2

r0

−k2[r1 + r2 − 2r0 + (z − a) ln(r1 − z + a) + (z + a) ln(r2 − z − a)− 2z ln(r0 − z)]
}

≈ I0a

ω

(
3 cos2 θ − 1

r3
0

− k2

r0

)
sin(ωt). (55)

The electric field varies only as sin(ωt).
The components of the electric field in spherical coordinates for r0 � a are

Er ≈ I0a

ω

(
2

r3
0

− k2

r0

)
cos θ sin(ωt), Eθ ≈ I0a

ω

(
1

r3
0

+
k2

r0

)
sin θ sin(ωt). (56)
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The fields in both the near and the far zones are very different in the case that the
“displacement current” is neglected compared to the case when it is properly included.
That is, the effect of the “displacement current” is not small in situations where radiation is
present, and one gains little insight from an approximation that disregards the “displacement
current”.15

A.3 Appendix C: The Electric and Magnetic Fields are Not Just

Retarded Static Fields

It is well known that the electric and magnetic fields described by Maxwell’s equations can
be deduced from the retarded potentials [14],

Φ(x, t) =
∫

�(x′, t′)
R

dVol′, A(x, t) =
1

c

∫
J(x′, t′)

R
dVol′. (57)

which have the form of the static potentials (48), but with the charge and current distri-
butions evaluated at the retarded time t′ = t − R/c, where R = |x − x′|, rather than at
the present time. However, it does NOT follow that the electric and magnetic fields have
the form of the static fields with the charge and current distributions evaluated at the re-
tarded time. Instead, the fields can be calculated from the charge and current distributions
according to16

E =
∫

[�] R̂

R2
dVol′+

1

c

∫
([J] · R̂)R̂ + ([J] × R̂) × R̂

R2
dVol′+

1

c2

∫
( ˙[J] × R̂) × R̂

R
dVol′, (58)

and

B =
1

c

∫ [J] × R̂

R2
dVol′ +

1

c2

∫ ˙[J] × R̂

R
dVol′, (59)

where R̂ = R/R = (x − x′)/ |x− x′|, and quantities inside brackets, [...], are evaluated at
the retarded time t′ = t −R/c.

If the charge and current distributions are oscillatory with a single frequency ω, we can
write

�(x, t) = �0(x)e−iωt, and J(x, t) = J0(x)e−iωt. (60)

The oscillatory factor e−iωt when evaluated at the retarded time t′ = t − R/c becomes the
waveform e−iω(t′−R/c) = ei(kR−ωt), where k = ω/c = 2π/λ. In this case, the electric and
magnetic fields can be written as

E =
∫

�0R̂

R2
ei(kR−ωt) dVol′ +

1

c

∫
(J0 · R̂)R̂ + (J0 × R̂) × R̂

R2
ei(kR−ωt) dVol′

− ik

c

∫
(J0 × R̂) × R̂

R
ei(kR−ωt) dVol′, (61)

15It might be argued that since the “displacement current” leads to radiation, which is a small effect
in the near zone, the fields in the near zone should be almost the same whether or not the “displacement
current” is taken into account. The present example shows that this is not the case.

16Equations (58) and (59) first appeared in [7].

13



and

B =
1

c

∫
J0 × R̂

R2
ei(kR−ωt) dVol′ − ik

c

∫
J0 × R̂

R
ei(kR−ωt) dVol′, (62)

The first term of eqs. (58) and (61) could be called the retarded Coulomb field, and the
first term of eqs. (59) and (62) could be called the retarded Biot-Savart field. Both of these
terms vary as the inverse square of the distance between the source and observer, and so
they are important in the near zone and negligible in the far zone.

It is perhaps surprising that the electric field has a second term that varies inversely
with the square of the distance, and which is due to the current distribution rather than the
charge distribution.17 This term is an indirect effect of Maxwell’s “displacement current”,
and in examples such as the present it makes a significant contribution to the difference
between the actual near-zone fields and those approximated by neglect of the “displacement
current”.

The last terms of eqs. (58)-(59) and (61)-(62) vary inversely with the distance between
the source and observer. These terms are the radiation fields, which are the most significant
additions to the fields when the “displacement current” is included in Maxwell’s equations.

The form of these terms shows that each current element whose time derivative is nonzero
creates electric and magnetic radiation fields that are 90◦ out of phase with respect to the
current, and which are equal in magnitude and at right angles to one another. If the current
elements are in phase, and their spatial extent is small compared to a wavelength, the
radiation fields from different current elements are in phase with respect to one another, and
there is constructive interference between them. Only if the radiator is large compared to a
wavelength can the total strength of the radiated fields be increased by introducing phase
differences between current elements.

A.4 Appendix D: Designer Near Fields for “Small” Antennas

For “small” antennas, whose size is much less than a wavelength, the far-field radiation pat-
tern can only be that of a Hertzian dipole [16, 17]. More complex far-field radiation patterns
arise only if the size of the antenna is comparable to (or larger than) a wavelength, such that
effects of retardation between different components of the antenna become important.

Here, we restrict our attention to “small” antennas, and consider what amount of varia-
tion of near fields is possible, consistent with the same far field radiation pattern.

We shall distinguish two subregions of the near field. If the antenna has characteristic
length a, and radiates waves of length λ � a, the radiation fields become larger than the
quasistatic fields only for distances >∼ λ from the antenna. The “near zone” is the region in
which the radiation fields are not yet prominent, and so is the region within distance λ of
the antenna.

Close to the conductors of the antenna, the details of the fields are very dependent on
the geometry of the conductors. However, at distances >∼ 2a from the antenna the fields take
on the form of an ideal Hertzian dipole radiator.

17The second term of the electric field vanishes for steady currents. See sec. 3 of [15]. While this term
is expressed as a function only of the conduction currents, it would be absent if the “displacement current”
were not present in Maxwell’s equations.
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In designing the near fields of an antenna, we therefore should consider separately what
forms are possible in the region <∼ 2a from the antenna, and the region from ≈ 2a to ≈ λ
from the antenna.

The options in the latter region are much more restricted than in the former, so we
consider the latter case first.

We recall that there are two forms of Hertzian dipole radiators, electric dipoles and
magnetic dipoles.18

Electric dipole radiators that broadcast at angular frequency ω are characterized by
their electric dipole moment pe−iωt where vector p is constant in time but can have complex
components. Similarly, magnetic dipole radiators are characterized by their magnetic dipole
moment me−iωt, where the constant vector m can have complex components.

The electromagnetic fields of these electric and magnetic dipole radiators are, for distances
>∼ 2a from the radiator (whose size is a) are (in Gaussian units) [17]

E = k2[(r̂ × p) × r̂ − r̂ × m]
ei(kr−ωt)

r
− ik{[3(p · r̂)r̂ − p] − r̂ × m}ei(kr−ωt)

r2

+[3p · r̂)r̂ − p]
ei(kr−ωt)

r3
, (63)

B = k2[(r̂ ×m) × r̂ + r̂ × p]
ei(kr−ωt)

r
− ik{[3(m · r̂)r̂ − m] − r̂ × p}ei(kr−ωt)

r2

+[3m · r̂)r̂ − m]
ei(kr−ωt)

r3
, (64)

where r̂ = r/r is the unit vector from the center of the dipole to the observer,
The only flexibility we have in the design of these fields are our choices as to the magni-

tudes, directions and phases of the magnetic moments p and m.
In the near field, where r < λ, the terms in eqs. (63) and (64) that vary as 1/r3 are the

largest. That is,

Enear(2a <∼ r <∼ λ) ≈ [3(p · r̂)r̂ − p]
ei(kr−ωt)

r3
, (65)

Bnear(2a <∼ r <∼ λ) ≈ [3(m · r̂)r̂ − m]
ei(kr−ωt)

r3
. (66)

These fields have the shape of static dipole fields multiplied by the traveling wave ei(kr−ωt),
and thereby have components both parallel to and transverse to the radial direction, in
contrast to the radiation fields that are purely transverse. Note that the electric field in
the near zone is, in the first approximation, due only to the electric dipole antenna, while
the magnetic field in the near zone is due only to the magnetic dipole antenna. Hence, no
combination of small electric and magnetic dipole antennas can eliminate the nonradiating
fields in the near zone, as may be a goal of enthusiasts for “crossed-field” antennas.

18Actually, there is a third possible form of small antennas, the so-called helical toroidal dipole antenna
[18], aspects of which may be (unknowingly) incorporated into the design of “cross-field” antennas such as
that of [3]. However, unless helical toroidal antennas involve counter windings, they are in effect single-turn
loop antennas, as considered here.
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If we desire the electric and magnetic fields (65)-(66) to be equal in magnitude in the
near zone to a first approximation, then we need |m| = |p|.19

If in addition, we desire the electric and magnetic fields to be 90◦ out of phase in the
near zone, we need m = i |p| m̂, where the directions m̂ and p̂ are arbitrary.

It is not possible to satisfy the preceding constraints and have the electric and magnetic
fields everywhere at right angles to one another in the near field. If these fields were at right
angles, their scalar product,

Enear · Bnear ∝ 3(m · r̂)(p · r̂) + m · p, (67)

should vanish. Consider a coordinate system with p along the z-axis. Then, vector m points
along angles (θm, φm) in spherical coordinates, and has rectangular coordinates

m = m(sin θm cos φm, sin θm sinφm, cos θm). (68)

The radial unit vector has components

r̂ = (sin θ cos φ, sin θ sinφ, cos θ). (69)

Hence,
Enear · Bnear ∝ 3[sin θ sin θm cos(φ − φm) + cos θ cos θm] cos θ + cos θm, (70)

which cannot vanish for all θ and φ for any choice of θm and φm.
Similarly, the transverse parts of the near electric and magnetic fields cannot be at right

angles to one another everywhere.
We close by considering radiation from a combination of a small electric and small mag-

netic antenna with common centers, taken to be the origin. The radiation fields have the
same form for any r >∼ 2a, which region includes most of the near zone and all of the far
zone,

Erad(r >∼ 2a)= k2[(r̂ × p) × r̂ − r̂ × m]
ei(kr−ωt)

r
= k2[p− (r̂ · p)r̂ − r̂ × m]

ei(kr−ωt)

r
(71)

Brad(r >∼ 2a)= k2[(r̂ ×m) × r̂ + r̂ × p]
ei(kr−ωt)

r
= k2[m − (r̂ · m)r̂ − r̂ × p]

ei(kr−ωt)

r
(72)

The time-average radiated power has the angular distribution20

〈
dP (r̂)

dΩ

〉
=

cr2

8π
r̂ · Re(E × B�) =

ck4

8π

(
|p|2 sin2 θp + |m|2 sin2 θm

)
, (73)

where θp is the angle between r̂ and p, and θm is the angle between r̂ and m. A possibly
surprising result is that there is no interference between the radiation from the electric dipole

19To have equality of electric and magnetic fields in the near zone we must have both electric and magnetic
antennas. The use of two electric antennas with moments p1 and p2, as advocated in one design of a “crossed-
field” antenna [2], merely leads to an electric antenna of total moment p = p1+p2, for which the near electric
field is always larger than the near magnetic field.

20r̂ · [p− (r̂ ·p)r̂]× [m� − (r̂ ·m�)r̂] = r̂ ·p×m�, while r̂ · (r̂×m)× (r̂×p�) = −(r̂×m) · r̂× (r̂×p�) =
−(r̂ × m) · [(r̂ · p�)r̂ − p�] = −r̂ · p� × m, so the sum of these two terms has no real part.
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p and the magnetic dipole m, no matter what are their directions and relative phases. The
total time-average radiated power follows from integration of eq. (73),

〈P 〉 =
ck4

3

(
|p|2 + |m|2

)
= PE + PM , (74)

where PE and PM are the time-average powers radiated by the small electric and magnetic
antennas if operated separately. Thus, there is no advantage (in terms of radiated power) to
a combination of a small electric dipole and a small magnetic dipole antenna compared to
either of these two separately.21
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