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1. Introduction 

 

Movement of charge q through a magnetic vector potential A field is known to create a force 

F on the charge when the vector A possesses curl.  This is usually expressed by the 

( )BvE
F

×==
q

 motional induction, although the full expression is ( )( )AvE ×∇×=  where 

v is the velocity.   Of interest is the fact that there are no longitudinal (along the velocity 

direction) components of force.  There is much debate about whether motional induction can 

occur in a non-curl A field where 0=B , that is the field that exists external to flux carried 

within a core.  Certainly when that flux (hence also the external A field) changes with time 

there is classical transformer induction via that external A field, usually expressed by 

t∂

∂
−=

A
E .  The fact that this electric field can only deliver voltage to a closed circuit that 

encircles the flux-carrying core has led to the belief that any closed circuit that does not 

encircle the core cannot obtain induction.  To challenge that belief it is necessary to fully 

understand the argument that says if the A field changes with distance (i.e. is not uniform) any 

moving charge will “see” a time-changing A field, with the rate-of-change proportional to its 

velocity.  If that is generally the case then it should be possible to express classical 

( )BvE ×=  motional induction in terms of that time-changing A field “seen” by the moving 

charge. 

 

In this paper we take the well-known situation of a very long magnetized cylindrical core 

where the internal B field is uniform and externally B is zero.  Both the internal and external 

A field vectors form concentric circles that can be expressed with simple math.  Consideration 

is given to charge moving in a plane normal to the cylinder axis.  Starting with the internal 

fields, the changing A field seen by the moving charge is shown to produce the classical 

( )BvE ×=  induction only if account is taken of the two separate effects, 

(a) change of the A vector amplitude with charge movement and 

(b) change of the A vector orientation with charge movement. 

It may be noted that (b) the second of these has generally been ignored in the past, but the fact 

that it is necessary to correctly reproduce one of the most tested laws in physics shows the 

importance of including this. 

 

That a time-changing A vector orientation should have an effect on a charge q should be 

obvious when it is realized that the vector qA is a form of momentum, and q will endure a 

force whenever that momentum changes.  It is instructive to look at classical mass momentum 

to see how change of orientation of an otherwise fixed amplitude momentum-vector creates a 

force on the mass.  This occurs when a mass m moves at a constant speed v in a circular 

movement, giving rise to centrifugal force.  Although the momentum magnitude mv is 

constant the momentum vector vp m=  rotates at angular velocity ω giving rise to a 

centrifugal force ωp at right angles to p.  Also any movement of the mass m within the 

centrifuge yields a Coriolis force at right angles to that movement.  Within the rotating 

reference frame the mass m inherits its momentum mv, and within the circular A field the 

charge q inherits its momentum qA.  For the internal A field it is necessary to include both the 

centrifugal-like and Coriolis-like forces on the charge q.  Having established the correct 

procedures for deriving all the force components from the internal A field, those procedures 

are then applied to the external A field where B is zero. 

 



 

2. A field internal to the core. 

 

Figure 1 shows one quadrant of a cross section of the core that carries the B field, this field 

points out of the screen.  The A field forms concentric circles around the centre.  Because the 

closed line integral around A at any fixed radius R equals the total flux passing through that 

circle we can say BRRA
22 ππ =  from which 
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Figure 1.  Charge q moving across a B field 

 

We select a charge q moving in the y direction at velocity vy passing by the core centre with a 

miss distance R0.  At any point y along the trajectory the A field at q has a radius R given by 
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0 yRR += .  At that point the y component of the A field is 
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 there is no longitudinal induction. 

 

At that point the x component of the A field is 
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AAx −=−=−= θ .  Thus 
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This is only half the known value as given by the ( )BvE ×=  motional induction. 
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The time-changing A from terms like 
y

A
v x

y
∂

∂
 in (2) and (3) take note of amplitude changes in 

the vector A, but changes in vector orientation can also yield an electric field.  Consider a 

vector A of constant amplitude but it is rotating about the z axis at an angular rate ω.  If we 

plot x and y components of A against time we get sinusoidal values with a 90 degree phase 

difference.  Differentiating those plots to get 
t

A

∂

∂
yields a 90 degree shift of both plots, then 

the resulting waveforms represent a rotating vector at 90 degrees to the original A, figure 2.    

 

Figure 2.  Rotating A vector 

 

The resulting E vector from 
t∂

∂
−=

A
E  is seen to lag the revolving A vector and its amplitude 

is given by 

AE ω= .        (4) 

 

Now consider a charge q that follows a circular path at radius R and (tangential) velocity vt so 

that it sees a constant value A field of magnitude BR/2.  Not only is the magnitude constant 

but also the alignment of the velocity v vector with the A vector, hence any longitudinal 
t

A

∂

∂
 

is also apparently absent.  But in fact the direction of A is constantly changing as depicted in 

Figure 2.  Its angular frequency is given by 
R

vt=ω  which when put into (4) and using (1) 

gives 
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This is at right angles to A as in Figure 2 hence results in a radial force on q.  This may be 

likened to centrifugal force that is also radial.  The circular A field confers momentum onto 

the charge q in a similar way that a rotating reference frame confers momentum onto a mass 

m.  Perhaps this is not surprising as the A field emanates from rotating charges that are its 

source.  It is instructive to look at Mach’s principle that implies mass inertia comes from 

some form of interaction with distant matter, and you would obtain the same centrifugal force 

if the mass m were stationary and the Universe revolved around it.  Actually that is not quite 

correct, the mass m translates through space in a small circular orbit, and the same centrifugal 

force would be obtained if the mass m were stationary and the Universe translated around a 
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small orbit, i.e. each mass followed a motion like that of the face-plate of an orbital sander.  In 

a way this is exactly what we have with the charges responsible for the magnetic field, they 

follow tiny orbits mimicking the movement of the grains of sand on the orbital sander, and 

that movement is responsible for the circular field influence on our test charge q.  With that in 

mind we must also consider the equivalent to Coriolis forces on mass within a rotating frame, 

where a radial movement gives rise to a tangential force.  In our system this yields 

 
2

B
vE rt =         (6) 

We now show that including (5) and (6) for the charge movement shown in Figure 1 adds the 

missing force to (3) and we have full compatibility with classical motional induction 

( )BvE
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. 

Looking again at Figure 1 we see that tangential velocity 
R
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(5) we get a radial E field 
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tangential E field 
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x =+= θθ .  This when added to (3) doubles the value to agree 

exactly with that from ( )BvE ×= . 

 

Dong the same procedure for Ey we obtain θθθδ cossin
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ty −==  that when added equate to zero.  Thus the Coreolis-like 

forces do not contribute to longitudinal induction. 

 

3. A field external to core 

 

Figure 3 shows the A field outside the core carrying flux Φ.  The A field forms circles 

concentric to the axis, and from the known fact that the closed line integral of A equals the 

flux Φ we can state Φπ =RA2  where R is the radius at the chosen point, hence 
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As before we select a charge q moving in the y direction at velocity vy passing by the core 

centre with a miss distance R0.  At any point y along the trajectory the A field at q has a radius 

R given by 22

0 yRR += .  At that point the y component of the A field is 
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This is a longitudinal (along the velocity direction) induction, but we have yet to establish 

whether Coreolis-like forces will add to this. 

Figure 3.  Charge q moving external to the B field. 

 

Turning to the transverse induction, the x component of the A field is 
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but again we have yet to establish whether Coreolis-like forces will add to this. 

 

Looking at Figure 3 we see that tangential velocity 
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get a radial E field 
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Dong the same procedure for δEy we obtain 
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forces do not contribute to longitudinal induction. 

 

Longitudinal and transverse inductions (8) and (10) can be expressed in a different form as 
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4. Conclusion 

 

By taking account of both the change of vector amplitude and the change of vector 

orientation with distance it is possible to obtain classical ( )BvE ×=  motional induction 

directly from the time-rate-of-change of the magnetic vector potential A.  When this 

procedure is applied to a non-curl A field where B is zero it predicts both a longitudinal (8) or 

(11) and a transverse (10) or (12) induced force on moving charge.   


