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It is well understood that various alternatives are available within EM theory for 

the definitions of energy density, momentum transfer, EM stress-energy tensor, and so 

forth.  Although the various options are all compatible with the basic equations of 

electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), 

nonetheless certain alternative formulations lend themselves to being seen as preferable 

to others with regard to the transparency of their application to physical problems of 

interest.  

One can argue that the standard formulation encountered in textbooks (and in 

mainstream use) for energy density and power flux, 
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even though resulting in paradoxes, owes its staying power more to historical 

development than to transparency of application.  One oft-noted paradox in the literature, 

for example, is the (mathematical) apparency of unobservable momentum transfer at a 

point in static superposed electric and magnetic fields,
1
 the consequences of which have 

on occasion led to time-consuming debate as to the feasibility of certain forms of 

electromagnetic propulsion.  Though such EM foundation issues have been addressed ad 

hoc in the literature, including in this journal,
1,2

 a well-organized and systematic 

treatment that has much to recommend it is as given, for example, in a book by Ribaric 

and Sustersic (hereafter R&S).
3
  Outlined herein are a few of the main points in the 

recommended approach that provide a welcome transparency. 

 Although the vector and scalar potentials ( ),ϕA are considered simply as an 

option in classical theory, in quantum theory they are understood to be more fundamental 

than the derivative electric and magnetic fields ( ),E B which are the “coin of the realm” 

in ordinary classical theory.
4
  In classical electrodynamics the choice of which variable 

pair to use is arbitrary, and the overall resulting predictions in terms of observables are 

indistinguishable.  Nonetheless, cogent arguments can be made that the ( ),ϕA approach 
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is to be preferred in many cases, even in classical EM theory, because of its transparency 

in application. 

 By virtue of the freedom in EM theory to choose a gauge (gauge invariance), 

when employing the ( ),ϕA potentials it is convenient to choose the Lorentz gauge 
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This results in simplified equations fully equivalent to Maxwell’s equations for E and B, 
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in which the scalar potential ϕ  is determined by the charge density ρ  alone and the 

vector potential is determined by the current density j alone.  Key to the development 

here it is the dependence on separate source terms for the two potentials that contributes 

to an independence that leads to transparency in application (see below).  The solutions to 

Eqns. (3) are given by the retarded Green’s functions 
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By use of these equations and the definitions provided in Footnote 4 the usual Maxwell 

equations in terms of E and B as driven by charge and current densities can be rederived. 

 It is at this juncture that our approach differs substantially from the usual 

approach concerning the definitions of EM energy density and power flux, and that as a 

consequence provides for transparency in application.  In place of the standard definition 

for EM energy density, (1.a), following R&S we define an EM energy density by  

 ( ), ,Au t u uϕ ρϕ= − +r  (5) 

where 
A

u  is an energy density defined in terms of gradients of the vector potential only, 
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and uϕ  is an energy density defined in terms of gradients of the scalar potential only, 
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 In place of the standard definition for EM power flux (1.b), we define an EM 

power flux by 

 

 ( ), ,At ϕ ϕ= − +S r S S j  (8) 

 

with definitions in terms of their respective (and separate) potential gradients as well,   
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 The associated Lorentz power density is given by an expression that parallels that 

based on densities defined in terms of  electric and magnetic fields ( ),E B , 
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 Finally, it can be shown that the structure outlined above can be derived from a 

Lagrangian density 
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 With regard to applications we first note by Eqns. (9) and (10) that power flux 

(and associated momentum transfer) depend on time derivatives ( )iA t∂ ∂ and ( )tϕ∂ ∂  

and therefore do not attribute momentum transfer to static field distributions.  This is in 

contrast to the definition of momentum transfer in the standard ( ),E B formulation where 

power flux (at a point) is defined in terms of a crossed-field Poynting vector product 

( ) ( )2

0, t cε= ×S r E B .  The latter definition leads to a possible (mistaken) inference that 

momentum transfer associated with the power flux can be associated with crossed static 

E and B fields even though there are no observable consequences of such (and, worse, 

the drawing of faulty conclusions that such momentum transfer can lead to, say, 

propulsive mechanisms).  Though once fully integrated over surfaces the two approaches, 

( ),ϕA  and ( ),E B , lead to identical results, it is the point-by-point distributions that 

differ, with the ( ),ϕA  approach being more compatible with our intuition concerning the 

relationship between causal charge/current sources and field effects. 



 Secondly, use of the standard ( ),E B  Poynting vector approach, as pointed out by 

Feynman, leads to “… a peculiar thing: when we are slowly charging a capacitor, the 

energy is not coming down the wires; it is coming in through the edges of the gap,” a 

seemingly nonsensical result in his opinion.
5
  Use of the ( ),ϕA  definitions for energy 

transfer yields instead a result in keeping with our intuition that the energy transfer is 

supplied by the wires.
6
 

 Third, when one solves for the static field distribution in the case of a (near-

infinite-length) solenoid, it is found that essentially all of the magnetic flux is confined to 

the interior of the solenoid, none outside. As a result, the standard calculation for the 

energy density ( ) ( )
22

0, 1 2u t cε=r B  confines the magnetostatic energy distribution 

entirely within the solenoid, none outside, and thus (correctly) that there are no magnetic 

effects to be detected by classical charge motion outside either.  From a quantum 

viewpoint, however, this seems somewhat questionable since it is known that, despite this 

inability to detect classical charge effects exterior to the solenoid, at the quantum level 

quantum interference effects of the vector potential A exterior to the solenoid can be 

detected (Aharonov-Bohm effect).
7
  However, application of Eq. (6) in this case reveals 

that, despite the absence of a Lorentz force q= ×F v B on a classical charge q in motion 

exterior to the solenoid, half of the magnetostatic energy as defined in (6) resides in the 

exterior region, an intuitively appealing result when one considers that the region exterior 

to the solenoid does register effects due to the B-field flux confined within the solenoid, 

at least at the quantum level.
8
 

 In summary, we see that in the application of electromagnetic principles there has 

over time been a development of various alternatives with regard to definitions involving 

the distribution of energy density and momentum transfer by EM fields defined in terms 

of the variables ( ), , ,ϕE B A .  Since all of the various (viable) options lead to identical 

predictions and outcomes with regard to net integrated energy and power, from a 

mathematical viewpoint they are identical with regard to results.  Therefore, strictly 

speaking, it is a matter of aesthetic choice as to which of the various approaches are used.  

Nonetheless, given the vagaries of misinterpretation that can occur in application, it 

appears that the approach outlined herein has much to offer.  
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