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1. Introduction. 
 
This paper examines the force-field needed to extract energy from the spinning/orbiting 
motion of electrons responsible for magnetism, that energy being continually replenished 
by the active vacuum.  Methods for creating this field are discussed. 
 
2.  The Solenoid equivalent for a Permanent Magnet 
 
Permanent magnets are often characterised by an effective surface current.  This current 
is imagined to flow around the surface of the magnet and to be responsible for the 
magnetic field of the magnet, Figure 1. 

 
Figure 1.  Magnet and its Equivalent Solenoid 

 
 Of course no such current exists, the field actually emanates from a vast number of 
spinning or orbiting electrons.  However the surface current analogy is useful for 
predicting performance of some magnetic circuits, effectively the magnet is replaced with 
an air cored solenoid of identical dimensions.  This imaginary solenoid is then energised 
by a current source which is continuously supplied by Nature, IATOMIC in Figure 1.  It is 
therefore pertinent to ask the question, what is needed to load this current source so that 
energy is continuously drawn?  The answer is of course to have a continuous (DC) 
voltage induced into the solenoid.  If this voltage is of the correct polarity, energy is taken 
from the current source (if of the opposite polarity energy is given up to the current 
source). 
 
That an induced voltage can extract such quantum energy is already an established fact, 
albeit hidden in EM theory and practise.  Take a simple magnetic circuit consisting of a 
high permeability core with an air gap.  Place two identical coils on that core.  When we 
pass DC current through one coil we initially extract energy from the power source to 
“charge” its inductance: thereafter the continuous current drain extracts energy only to 

IATOMIC

N

S

Same Dimensions

IATOMIC

N

S

Same Dimensions



feed the copper losses, which we shall ignore.  That initial quantity of energy (which we 
can call one unit) is effectively all stored in the air gap, and was drawn while the flux 
build-up induced a voltage to load the current source.  Now apply an identical current to 
the second coil.  The flux in the air gap is doubled in value, but energy is proportional to 
flux squared, so the energy stored there is now four units.  However the charging of the 
second inductor takes only one unit of energy from its power source, so where has that 
extra two units come from?  The answer is in that extra flux build-up creating voltage in 
the first coil to impose a second load impulse on its power source.  If we now replace the 
first coil with a permanent magnet having equivalent surface current, we find that we start 
with one unit of energy in the gap supplied by Nature.  By inputting just one unit of 
energy via the second coil we get two additional units of energy in the gap supplied by 
Nature.  This is the basis of an OU reluctance motor described by Aspden, but the flaw in 
his argument becomes apparent when you examine the complete system (not just the air 
gap) over a full cycle.  The machine has to return to its start conditions, where we find 
that the free energy extracted all gets fed back to the quantum world.  What is needed for 
continual extraction of energy from the first coil/PM is not cycles of alternating voltage, 
but a continuous DC induction. 
 
3.  DC Voltage Induction into a Coil? 
 
It is accepted wisdom in electromagnetic theory that DC induction into a coil is 
impossible.  This view is based on the premise that induction involves a time rate of 
change of magnetic flux through the coil; essentially a DC voltage induction would 
require a magnetic field which rises continuously to infinity.  However it should be noted 
that there is an interim step between the changing magnetic field (B) and the voltage 
induction.  Induction involves a force on the conduction electrons, and by definition a 
force on an electric charge is an electric (E) field.  The changing B field appears to create 
an E field, and it is the E field which drives the electrons.  This E field is non-
conservative.  Unlike the conservative Coulomb field, here a closed integral does not 
yield zero, it yields a certain value, the volts per turn.  Note that when dealing with 
alternating fields the phase relationship between the B field and its created E field is 90°. 
 
What is generally overlooked in the perceived wisdom is the established fact that this 
quadrature phase relationship between B and E is not a universal requirement.  Take EM 
radiation as an example.  EM radiation in the far field involves B and E fields which are 
in phase.  At the wave crests, both B and E are at a maximum value; dB/dt is zero, but E 
is at a maximum.  Taken to the low frequency limit of DC, this can allow a static E field 
to coexist with a static B field. 
 
Most scientists will quote one Maxwell equation as evidence that an E field is linked to a 
changing B field:- 

t∂
∂−=×∇ BE         (1) 

This tells us that if B is changing with time then there is an E field which has curl, i.e. E 
changes with distance.  It does not tell us that if the B field is static then E is zero.  When 



we look at this in relation to EM radiation, we find that E and H are in phase, having the 
ratio Z0 (the impedance of free space), hence 
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Therefore we can rewrite (1) to be 
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The only component of the Curl function is (dEx/dz)j, where z is the radiation direction, x 
is the polarisation direction and j is the unit vector along the y direction, then since 
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In this case the Maxwell equation (1) simply tells us the obvious, that if at a fixed point in 
space B (or E) is changing with time, then when we look back along the approaching 
radiation, we will see the E (or B) waveform changing with distance.   The changing B 
does not create the E, B and E both exist together in synchronism.  It will now be shown 
how  a local static E field can be created. 
 
4.  Electron Acceleration 
 
It is established physics that an accelerating charge radiates EM.  In its most basic form, a 
point charge Q traveling at velocity v produces around it an A field related to v. 
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Everywhere, A points in the velocity direction, and the magnitude of A varies with 
inverse distance r.  Most texts dealing with accelerating charge start with an elementary 
dipole consisting of two opposite-polarity charges +Q and –Q separated by a small 
distance l, thus forming an electric dipole of moment p=Ql.  Then if one charge is 
stationary while the other moves at velocity v, Qv=dp/dt and (5) becomes 
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If the velocity is changing with time, then the changing A field produces an electric field 
component given by 
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where the subscript A denotes the vector potential derivation of this component.  
Everywhere, EA points in the opposite direction to the acceleration, and the magnitude of 
EA varies with inverse distance r.  The moving charge also has around it a scalar potential 
φ, 
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 which produces another electric field component from its gradient 



)(ϕϕ grad−=E         (9). 

When we perform the spatial differentiation grad(div[φ]) we have to take account of the 
propagation delay ( by using retarded potentials emanating from the charge at an earlier 
position), so this math function is affected by charge velocity and acceleration.  The sum 
of the two electric field vectors (7) and (9) then yields the classical dipole radiation 
characteristics, both near and far field.  This approach has been followed rigorously since 
the days of Hertz, but almost invariably concentrates on oscillating charge where 
acceleration and deceleration take place within the confines of the dipole length.  There 
seems to be no consideration given to acceleration which takes place in one small region 
of space, with deceleration taking place in another small region of space.  We study that 
problem here. 
 
We are interested in the near field, and particularly a near field which is non-conservative 
(i.e. we want an integral around a closed path to yield a non-zero answer).  It is well 
known that any field which is the gradient of a scalar function is conservative, so we can 
ignore (9).  This leaves only (7), the vector potential derived EA for consideration. 
 
For an electron, which has negative charge, the A field and the E field (we have dropped 
the suffix A) are reversed, thus A points in the opposite direction to the velocity and E 
points in the acceleration direction, Figures 2 and 3. 
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Figure 2. A Field around a moving electron 
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Figure 3. E Field around an Accelerating Electron 

 
This E field is of interest because it has unusual properties.  Because of it’s A field 
derivation it is non-conservative, an integration round a closed circuit does not 



necessarily yield zero voltage.  Also we can’t describe it by the familiar field line 
concept, where field amplitude is indicated by the line spacing.  That protocol has 
historical connotations (remember the old lines per square centimeter?), but is still used 
universally to describe fields.  It adequately does so when the fields are conservative, 
where the fields can be described by the gradient of a scalar function, but the radiative 
field we are discussing does not fall into that category.   All the E field lines from the 
electron acceleration point in the same direction, the lines are all parallel.  If we wish to 
display field strength by line spacing, we would have lines which begin and end in space, 
which is nonsense.  In Figure 3 the field strength is denoted by the length of the arrows. 
 
Consider a closed loop close to an electron which suddenly receives an acceleration 
impulse, as shown in Figure 4.  If we take the E field component tangential to the loop at 
different points (e.g. denoted by the black dots) we get a chart of the form shown.  The 
closed integral of this component is non-zero, the E field induces voltage into that loop.   

Figure 4.  Induction in a Closed Loop. 
 
The graph in Figure 4 was derived using equation (7) in a spreadsheet.  For a single 
electron which changes velocity over a small distance compared to the dimensions of the 
loop, the voltage is a unidirectional impulse. 
 
 
5.  Mechanical Acceleration 
 
Now consider an electron traveling along the stationary conductor towards the rotating 
slip-ring of Figures 5 or 6.  This electron is part of any current flowing in the slip-ring 
circuit.  It travels along that conductor, then along the brush, at trivial drift velocity, but 
when it leaves the brush tip to enter the rotating slip-ring, it is suddenly accelerated to 
non-trivial velocity.  That acceleration takes place over a small distance, say the diameter 
of the brush tip.  Inside the moving conductor the electron now travels at trivial drift 
velocity relative to the moving conductor.  The sudden acceleration up to slip-ring 
velocity produces an electric field impulse.  The accelerations of the many electrons 
which make up a significant current flow create many such unidirectional impulses, 
which appear as a constant DC field in the vicinity of the brush tip.  It can be shown that 
the averaging of the many impulses gives the E field as 
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where ∆v is the change of velocity over the small acceleration region.  Since ∆v=vslipring-
vdrift and vdrift is tiny, we get 
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Thus for a slip ring with surface velocity 10m/s and a current of 100A we get an E field 
at1mm from the brush tip of 0.1V/m.  Although this is a relatively small field value, it is 
enough to induce measurable DC voltage into a practical multi-turn coil.  To the Author’s 
knowledge this DC induction has not been discovered before.  Quasi-static DC induction 
is known when flux through a coil changes at a constant rate, but this is time limited, true 
DC would require the flux to reach an infinite value.  Here we have another form of DC 
induction which does not have that infinity. This is depicted in Figure 5. 
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Figure 5.  E Field from Slip-Ring 

 
This E field, although static, does not obey the normal rules of electrostatics.   
 
At the opposite side of the loop, conduction electrons leaving the slip-ring at the brush 
contact endure a deceleration, which creates a DC electric field near that brush tip, Figure 
6. 
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Figure 5. Complete Slip-Ring 
 
Note that in the two field regions the fields point in the same direction.  If we now place 
two stationary coils within the slip ring, one close to each brush contact, we have a DC-
DC transformer, Figure 7. 
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Figure 7.  DC-DC Transformer 



 
This transformer is current driven, so operates at low impedance.  Current driven across 
the slip-ring creates the local static E fields described earlier, which induce DC voltage 
into the two coils (these coils are shown here as single turns, but of course they can be 
multi-turn).  That voltage drives a current through the load.  Current flow in the coils then 
creates B and A fields, the A field being the important one.  The conduction electrons in 
the slip ring, transported at high velocity through the non-uniform A field, endure 
longitudinal induction which loads the input current generator with voltage.  Hence there 
is no power gain in this transformer, a load is reflected from output to input, the system is 
truly reciprocal.  Note the mechanical rotation of the slip ring is merely the transport for 
the conduction electrons, it does not add energy to the system.  The only loads on the 
drive shaft are windage and the friction loads of the bearings and brushes. 
 
Now consider the source for the non-uniform A field, through which those electrons are 
transported, as magnets.   Magnets replace the coils of Figure 7.  It is often convenient to 
represent magnets by their equivalent surface current, i.e. to imagine that their permanent 
field is created by current flowing around the curved surface.  Of course the source of this 
perpetual current is atomic in origin, so we can place an atomic current generator in series 
with this surface loop.  Now when we consider the E fields from the brush tips, it is seen 
that these induce a constant voltage into those surface loops.  There is a load placed on 
the atomic current generator.  In both E field regions the direction is such as to load the 
local surface current driver, thus taking power from both disc magnets.  It may be noted 
that the high values for equivalent surface current in magnets enable significant power 
extraction at the low induced voltages from the E fields. 
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Figure 8.  OU Homopolar Generator 



 
This homopolar generator is a variation of the Distinti paradox and is also a generator 
version of the Marinov Motor. The generated energy comes, not from the drive shaft, 
but from the quantum dynamos in the permanent magnets.  The manner in which that 
energy is extracted has been exposed. 
 
6.  Solid State Acceleration. 
 
There are non-mechanical structures where a continual stream of electrons is accelerated 
in one region of space and decelerated in another.  These can also be expected to exhibit 
the static E field radiation close to the acceleration regions.  One example is the electron 
beam generator in cathode ray tubes.  A more interesting example is the junction between 
a normal conductor and a superconductor.  Electron velocity inside a superconductor is 
certainly non-trivial, so across the junction significant acceleration takes place.  Figure 9 
depicts a system which should exhibit negative resistance characteristics, thus being a 
solid state OU generator.  A ring magnet surrounds each junction, magnetized so that the 
DC E field from each junction loads the quantum dynamos.  This produces a pair of 
opposing A fields along the super-conducting section, where the high speed electrons 
gain energy from the highly non-uniform A field. 

 
 

Figure 9.  Solid State OU generator. 
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