
 

The Av )( ∇⋅ Convection Term applied to the Faraday Disc 

Generator 
 

1. Introduction 

 

In order to describe voltage induction purely in terms of the magnetic vector potential A, 

several authors start with the premise that all induction comes from the full time-differential 

of A that includes the partial differentiation 
t∂

∂A
 which applies to transformer induction plus 

another term that takes account of change in A as seen by an electron moving through a non-

uniform A field.  They take the convection term Av )( ∇⋅ as used in fluid dynamics as the 

needed addition, and they arrive at 

)( Av
A

E ∇⋅−
∂

∂
−−∇=

t
φ        (1) 

as the general formula for the electric field E,  produced by the three terms on the RHS, 

respectively the gradient of the scalar potential φ , transformer induction and motional 

induction.  Then they use vector math to arrive at a different expression for Av )( ∇⋅  

 )()()( BvAvAv ×−⋅∇=∇⋅ A      (2) 

where the first term on the RHS is the gradient of the scalar product Av ⋅  but with all the 

velocity derivatives removed (hence the subscript A) and the second term is the well known 

motional induction from movement through a magnetic B field as taught by Fleming’s RH 

and LH rules.  (The appendix shows this derivation in detail.)  Thus their new expression for 

E is  

 )()( AvBv
A

E ⋅∇−×+
∂

∂
−−∇= A

t
φ     (3) 

in which the first three terms are found in any text dealing with EM theory and the fourth term 

is a new addition. 

 

In this paper when we take the convection term Av )( ∇⋅  motional induction and apply this to 

the Faraday disc homopolar generator we find that it does not yield the actual voltage 

produced, hence we challenge the formula (1) and (3) as being definitive.  We look into why 

the discrepancy arises and arrive at a different perspective for a definitive expression for E. 

 

2. Homopolar Induction. 

 

In cylindrical coordinates the vector AvE )( ∇⋅=−  is given by 
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    (4) 

where ar, aθ and az are the unit vectors.  In the Faraday homopolar generator we have a disc 

rotating about the z axis where vz =0.  The only induction of interest is the radial term, hence 

we only need consider the ar terms in (4) 
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The A field forms concentric circles about the z axis hence both Ar and Az are also zero, so 

this reduces to 









−=−

r

Av
E rr

θθa        (6) 

We know that 

rv ωθ =          (7) 

where ω is the angular velocity and we also know that Aθ rises from zero at the center to a 

maximum value at the outer rim of the magnet, and its value at any radius r is given by 

 
2

Br
A =θ         (8) 

[This follows from the fact that the closed line integral of the A field is equal to the flux 

enclosed, hence with circular closures at radius r we obtain BrrA
22 ππ θ = ] 

Thus the induced radial E field as given by (6), (7) and (8) is 

 
2

Br
Er

ω
=         (9) 

When integrated from center to rim at radius R we get the voltage 

 
4

2BR
Vhomopolar

ω
=        (10) 

The expected E = v X B induction when integrated from center to rim R gives rise to the well 

known homopolar voltage 

  
2

2BR
V opolarhom

ω
=        (11) 

Thus there is a discrepancy between the two methods! 

 

3. A Revised Perspective 

 

If we look again at the identity (2) 

( )AvBvAv ⋅∇+×−≡∇⋅ A)(      (2) 

there is a subtlety in this equivalence that is not generally appreciated.  The convective term 

on the LH side has 9 components, 3 longitudinal and 6 transverse, see (A1) in the appendix.  

The first term on the RH side of (2) has 12 components all of which are transverse, see (A2), 

but only 6 of these are inherited from the LH side.  The last term on the RH side has 9 

components, 3 longitudinal that are inherited from the LH side and 6 transverse that account 

for the “missing” 6.  The situation is summed up in the following figure. 
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Note that the 6 transverse components shared by the two RH side terms sum to zero, as they 

must do for the equivalence to hold.  If the LH side is the true defining formula then any 

calculations using only the Bv ×  term on the RH side must give the wrong result since it 

includes components that would be negated by the last term.  This is easily demonstrated in 

the Faraday disc homopolar generator where the convective Av )( ∇⋅  formula (or its full 

equivalent (2) discussed here) yields half the output voltage as calculated using just the Bv ×  

motional induction.  That Bv ×  motional induction has been in use for so long that it beggars 

belief that it consistently yields incorrect results, hence this calls into question the whole 

validity of (2). 

 

If we transpose (2) we create the equivalence 

( ) AvAvBv )( ∇⋅−⋅∇≡× A       (12) 

which yields the following situation. 

 

 

 

    

( ) AvAvBv )( ∇⋅−⋅∇≡× A  
 

 

 

 

Motional induction Bv ×  obtains its 12 transverse components from the two vector 

identities on the RH side, but there the three longitudinal components sum to zero.  This 

explains why the convective Av )( ∇⋅  formula yields half the output voltage as calculated 

using just the Bv ×  motional induction, it only contains half the terms.   It appears that 

the vector math that achieves (2) is not the correct way of doing things.  Examination of 

the terms in Bv ×  and comparing them with terms in A×∇  (which of course gives B) 

suggests that the convective Av )( ∇⋅  formula only applies to A fields where 0=B , and 

is invalid when B is present. 

 

If we take the case where 0=B  we get from (12) 

 )()( AvAv ⋅∇=∇⋅ A        (13) 

That 0=B  condition where A×∇  (curl A) is zero causes the transverse components of 

each side of (13) to be equal in value, and they both have identical longitudinal 

components.  Thus it is quite possible that either is valid in this situation and it doesn’t 

matter which one we chose.  We therefore offer the definitive E field condition as 

 )( Bv
A

E ×+
∂

∂
−−∇=

t
φ  for A fields that have curl 

 )( Av
A

E ⋅∇−
∂

∂
−−∇= A

t
φ for A fields that do not have curl (14) 

 or )( Av
A

E ∇⋅−
∂

∂
−−∇=

t
φ  for A fields that do not have curl 

There is some evidence from experiments with the Marinov slip-ring generator and the 

Distinti Paradox 2 that longitudinal induction (along the velocity direction) as predicted by 

Av )( ∇⋅  or )( Av ⋅∇ A  is possible.  

 

 

12 components 

3 longitudinal sum to zero 



Appendix. 

 

The Cartesian components of ( )Av ∇⋅  are: 

( ) =∇⋅ Av
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     (A1) 

where the overbars denote the longitudinal components parallel to the velocity and the 

coloured rectangles denote the transverse components. 

The Cartesian components of Bv ×  are: 

=× Bv
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where there are no longitudinal components.  It is seen that only half the transverse 

components (as indicated by the coloured rectangles) get carried over from (A1) 

The Cartesian components of ( )Av ⋅∇  are: 

( ) =⋅∇ Av
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 (A3) 

which include spatial derivatives of velocity.  We are only interested in time variations of A 

since it is only these that induce an E field.  If we denote (A3) with the derivatives of velocity 

suppressed as ( )Av ⋅∇ A  then its components are: 

( ) =⋅∇ AvA
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     (A4) 

where the overbars represent the longitudinal components carried over from (A1).  The 

remaining terms account for the transverse components in (A2) that were not carried over 

from (A1)  

 


