
On Electrodynamic Formulae for the Marinov Generator 
 

1. Introduction 

 

Classical electrodynamics as currently taught gives the force F acting on an electric charge q 

(such as an electron where q is negative) as 

 EF q=         (1) 

where E is the electric field in which the charge is immersed (here we use bold characters to 

represent vectors).  E can come from a variety of sources and is generally expressed by 

 Bv
A

E ×+
∂

∂
−−∇=

t
φ       (2) 

where φ is the scalar electric potential, A is the magnetic vector potential, v is the velocity of 

q and B is the magnetic field, all at the position of q.  This formula will be found in any 

college text-book teaching electromagnetic theory.  The first term is the electrostatic or quasi-

static Coulomb field from nearby charges.  The second term is the so-called transformer 

induction where A and the resultant E form circles around the transformer core, and it is this 

E field that drives the conduction electrons inside the conductors forming the transformer 

secondary coil.  Since that A field is related to the magnetic flux Φ within the core, the flux 

must change with time in order to create that E field; unfortunately the presence of that E 

field is not usually taught in electrical engineering, it is hidden behind the formula expressing 

volts-per-turn as 
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where Φ is the magnetic flux within the core.  The missing formula that is generally not 

taught in electrical engineering links the vector potential A to the flux Φ by stating that for 

any closed circuit that encircles the core the line-integral of A is exactly equal to Φ, hence the 

second term in (2) leads directly to (3).  

  

The third term is the so-called motional induction that applies to either (a) generators where v 

is the movement of the conductor whence E yields the voltage induced into the conductor or 

(b) motors where v is the drift velocity of the conduction electrons within the conductor and E 

yields the sideways force applied to those electrons that then move sideways using the 

Coulomb force of attraction to drag the lattice of positive ions with them.  The vector product 

Bv ×  is usually taught by means of Fleming’s RH and LH rules with load current taking the 

place of induced E or drive current taking the place of drift velocity. 

 

There have been various papers written about the possibility of another E field that should be 

added to (2), prompted by the work of the late Stephan Marinov, such that (2) now becomes 
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This new term )( Av ⋅∇ is the gradient of the scalar product of the velocity v with the 

magnetic vector potential A, that scalar being the component of A that is tangential to the 

velocity multiplied by the velocity magnitude.  This scalar )( Av ⋅  is something that in earlier 

times was referred to as electro-kinetic potential.  That potential has long been discarded from 

modern theories, but is resurrected to account for some of Marinov’s experiments.  In the 

presence of a static A field that is not spatially uniform it seems to fit the bill of a time-

changing A as “seen” by a moving electron. 

 

Marinov’s work was a novel form of electric motor that supposedly developed force along the 

conductor in the form of a slip-ring, but it is seriously disputed by others who have tried 

replications and either measured zero torque or more confusingly positive or negative torque 

depending on where the electrical contacts are made to the slip-ring.  The new term being the 

gradient of a scalar potential, just like the Coulomb field, when integrated around a closed 



circuit produces zero voltage induction, hence little attention has been paid to the generator 

version of Marinov’s experiment.  In this present paper we look at the derivation of (4) to 

question some of the assumptions made, and arrive at a different formula.  We also question 

how Marinov’s longitudinal induction, i.e. forces on the conduction electrons acting along the 

filamentary conductor, can be expected to translate into a measurable force on the whole 

conductor to act as a motor, whereas in fact it should simply appear as an internal E field 

affecting a measurement of conductance or resistance. 

 

2. The Marinov Motor/Generator 

 

The Marinov motor used a slip-ring rotor that passes around a pair of parallel magnetized 

cores (either permanent magnets or electro-magnets) that are long and have opposite 

directions of magnetization.  Marinov actually used a cylindrical bar magnet that was split 

into two then one half reversed to create two magnets each having semi-circular cross section.  

He used a mercury-filled circular channel as the slip-ring with two electrical contacts 

penetrating the surface at diametrically opposite positions, and noted circular movement of 

the mercury when current was applied.  Such a scheme is depicted in Figure 1 taken from one 

of Marinov’s publications 

Figure 1.  The Original Marinov Motor 

 

Other forms of the motor used two parallel rod magnets connected to appear as an elongated 

magnetized toroidal core, Figure 2. 



Figure 2.  Marinov Motor 

 

It is this form that has been investigated by various people. 

 

3. Derivation of Equation (4) 

 

Several authors start on the basis that a charge q with mass m within a magnetic vector 

potential A has both a mechanical momentum mv and another electro-kinetic momentum qA.  

The latter is a form of hidden momentum, hidden because it is not related to velocity.  To 

many schooled in classical mechanics the idea of a body possessing momentum that is not 

related to is velocity is hard to grasp.  However it should be realized that electro-dynamic or 

electro-kinetic forces are transmitted to a body via photons or sub-photons, and these invisible 

particles travelling at light velocity do carry momentum.  Thus the so-called hidden 

momentum could arise from some form of supplied momentum, supplied by interaction with 

those invisible space particles.  It can be argued that space is filled with such virtual particles 

arriving from all directions, and all our measured forces on matter come from subtle changes 

in the average effect of momentum exchange taking place at both absorption and re-emission 

of those space particles. 

 

Now it is possible to relate the rate-of-change of the total momentum to an applied force F, 

such as the Coulomb force from nearby charge as expressed by the presence of an electric 

field φ−∇=E  as 
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This is a classical inertial effect where F is the force that must be applied to create the change 

of momentum.  For a particle with fixed q (like an electron) within a constant A field its 

hidden momentum qA is constant, its time derivative is zero so it disappears from (5), then F 

is simply the classical value needed to achieve the change of velocity for a given mass.  

However it should be recognised that if qA changes with time then this changing momentum 

can create a force so that now a new force value F’ is needed for the same change of velocity 

at the given mass.  It makes sense to move qA over to the RH side of (5) where we obtain for 

the new force 
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Dividing by q gives the total effective E field as 
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It is important now to realise that instead of the partial differential of A that applies to it’s 

change with time at a fixed point in space, one should use the full differential AD  that also 

takes account of how A changes with time as the test point moves through space containing a 

non-uniform A field.  We then get 

 Av
AA

E )( ∇⋅−
∂

∂
−−∇=−−∇=

tDt

D
φφ       (8) 

which contains both the partial differential and the so called convective term used in fluid 

dynamics.  Then using a well known vector relationship 
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that can be rearranged into 
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we find that (8) can be expressed as 
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Most authors then go on to say that for a charge q moving at velocity v the del operator ∇  

does not act on v hence the last two terms can be ignored.  Then since BvAv ×=×∇×  we 

get back to (4).  Dennis Marvel in a private correspondence with the author puts the point 

more succinctly saying 

 

“This point is worth a little discussion.  Vector operators involving spatial derivatives 

act on vector fields, not on isolated vectors.  The velocity field of a single particle has 

meaning only in a Lagrangian, as opposed to an Eulerian, coordinate frame and takes on 

a uniform value throughout space.  At each point, the velocity field is equal to the 

instantaneous velocity of the isolated particle: Velocity arrows positioned throughout 

space track the particle’s local time-varying velocity vector like an enormous landscape 

of weather vanes.  This picture arises from the portability of vectors.  The particle’s 

velocity relative to another particle has meaning only if its velocity vector can be 

translated to the other particle’s position for subtraction under the triangle rule.  Hence 

the exclusive use of Lagrangian coordinates in the evaluation of differential vector 

operators acting on the velocity or acceleration of an individual particle seems to be the 

only policy that makes sense.” 

 

The intention of eliminating all of terms where del operates on v is to remove any possible 

forces induced from the A field by a changing velocity since the source is simply the change 

of momentum qA that is independent of velocity.  However the full )( Av ⋅∇  term in (4) does 

still contain velocity derivatives, so it is necessary to use a truncated version where those 

velocity derivatives are suppressed.  The subscript A is used to identify this truncated version 

as )( Av ⋅∇ A so that (4) becomes 
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Appendix A examines all the Cartesian components to show that the convective term 

Av )( ∇⋅−  can be replaced by )( AvBv ⋅∇−× A , and this throws up some interesting 

observations.   

 

4. Re-look at Equation (5) 

 

For this exercise we will stay with the Marinov slip-ring that lend itself to the use of 

cylindrical components of the convective term )( Av ∇⋅  thus ensuring that no components are 

discarded unnecessarily.   

 



In the cylindrical coordinate system the convective operator Av )( ∇⋅  is given by  
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where ar, aθ and az are the unit vectors.  Note that there are no spatial derivatives of v to be 

discarded.  At first sight this supports the view that any terms on the RH side of  (10) that 

include velocity derivatives should be discarded, but we will now show that the procedure 

that simply eliminates terms where ∇  operates on v does not fully do that.  If we take the 

disputed )( Av ⋅∇  term in (4) that came from this procedure, its cylindrical coordinates are 

given by  
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Note that all the spatial derivatives apply to the product of v and A components where we 

must apply the differentiation product rule, for example 
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which now includes the spatial velocity derivative 
θ
θ

∂

∂v
.  Somehow velocity derivatives have 

crept in.  Other authors have used a modified version of )( Av ⋅∇  with the velocity 

derivatives removed as 
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The futility of using the vector relationship (9) and then discarding some of its terms is borne 

out when we calculate the induction for the Marinov generator using firstly (4) and then again 

using (8).  They should give the same results. 

 

We can choose the coordinates such that the slip-ring lies in the r-θ plane with its rotation 

axis along the z direction, then we get for the ring movement 0=rv , 0=zv  and with the 

ring symmetrical to the magnets 0=zA .  Only the aθ component in (12) can induce voltage 

into the slip ring, hence we are left with 

 
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Although the slip ring velocity vθ is constant, for any induced current the electrons that flow 

via the brushes endure a change of velocity there, so the second term in (14) cannot be 

ignored.  If (14) is valid then any voltage induced across the slip-ring from the first term is 



negated by the electron velocity changes at both brush contacts in the second term, i.e. (14) 

tells us the Marinov generator will not work.  If we compare this with the result from (8) 

using the aθ component in (11) we get   
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We see this differs from (14) in its second term.  Thus the application of the vector identity 

(9b) plus the attempted elimination of velocity derivatives has left us with two different 

formulae for the same thing, and that can’t be right.  The direct application of the convective 

term in (8) without going through the vector expansion and elimination procedures yields a 

formula that tells us the Marinov generator will work. 

 

5. Discussion 

 

If we look again at (5) which is the basis for developing (4) we immediately see the 

disconnect between mechanical momentum mv and electro-kinetic momentum qA in that qA 

is independent of velocity.  Certainly a change of velocity can induce a force via the first 

term, that force being related to the velocity rate-of change (i.e. acceleration) of mass, but in 

the second term it is the rate-of-change of A (and/or possibly q in certain circumstances) that 

induces the force.  In a spatially non-uniform A field the time rate-of-change of A as seen by 

the moving charge is related to v, not to the rate-of-change of v.  Thus the second term in (14) 

cannot be correct.  If we look at the momentum eA of each electron as it moves at trivial drift 

velocity along the wires, then passes onto the slip ring at significant velocity and so on, in a 

uniform A field we see that everywhere the eA momentum doesn’t change, even over the 

electron acceleration or deceleration regions at the brushes, figure 3. 

Figure 3.  Electro-kinetic momentum on electrons 

 

This should tell us that (14) is invalid and we need to use (15).  So we will stick with (8) as 

the general defining equation leading to (15) for the slip ring set up.  Now rv ωθ = where ω is 

the angular velocity and r is the fixed radius of the slip ring, so this now becomes 
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terms.)  For a spatially non-uniform A field such as that near magnetized material the voltage 

V induced across the slip ring is given by 
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It is possible to arrive at A field configurations where the last term integrates to zero or, 

unlike that of a uniform A field where it negates the first terms, adds to the overall induction.  

Take for example four magnetised rods that pass through a slip ring where alternate rods carry 

flux in opposite directions.  Figure 4 shows the A field and included there is that half of the 

slip ring over which the integration (17) is carried out (integration over the other half yields 

the same voltage and polarity).  The slip ring is 200mm in diameter and the flux density in 

each rod is 1 Tesla.  

 

Figure 4.  Slip-ring around four rods. 

 

 The next figure show the Aθ and the Ar values going CCW around the half slip ring. 

Figure 5.  Aθθθθ and Ar values 

It is seen that both 
θ

θ

∂

∂A
 and Ar values are positive, unlike the uniform field case where they 

are of opposite polarity and cancel out.  Using the device as a generator, with the 200mm 

diameter slip ring rotating at 1000RPM the induced voltage calculates at 70.7mV which 

although low could be usefully employed. 
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6. The Marinov Motor/Generator 

 

For Marinov’s split magnet Figure 6 shows the A field lines in the plane of the rotor.  The red 

line depicts a half rotor along which radial Ar and tangential Aθ components are determined.   

 

Figure 6  A field lines 

 

Results are shown in Figure 7 assuming that the magnets have a flux density of 1 Tesla. 

 

 

Figure 7.  Radial and Tangential A-field components 

 

Here it can be seen that both 
θ

θ

∂

∂A
 and Ar are positive thus they are additive in (16).   
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Figure 8  Using two ring cores 

  

   A typical A field plot for this configuration is shown in figure 9 

 

 

 

 

Figure 9.  A-field for two ring magnets 
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Appendix. 

 

The Cartesian components of ( )Av ∇⋅  are: 
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where the overbars denote the longitudinal components parallel to the velocity and the 

coloured rectangles denote the transverse components. 

The Cartesian components of Bv ×  are: 
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where there are no longitudinal components.  It is seen that only half the transverse 

components (as indicated by the coloured rectangles) get carried over from (A1) 

The Cartesian components of ( )Av ⋅∇  are: 
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which include spatial derivatives of velocity.  We are only interested in time variations of A 

since it is only these that induce an E field.  If we denote (A3) with the derivatives of velocity 

suppressed as ( )Av ⋅∇ A  then its components are: 
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where the overbars represent the longitudinal components carried over from (A1).  The 

remaining terms account for the transverse components in (A2) that were not carried over 

from (A1)  

Examination of the terms in (A1), (A2) and (A4) shows that we can create the identity 

( )AvBvAv ⋅∇+×−≡∇⋅ A)(       (A5) 



However there is a subtlety in this equivalence that is not generally appreciated.  The 

convective term on the LH side has 9 components, 3 longitudinal and 6 transverse, see (A1).  

The first term on the RH side of (A5) has 12 components all of which are transverse, see 

(A2), but only 6 of these are inherited from the LH side.  The last term on the RH side has 9 

components, 3 longitudinal that are inherited from the LH side and 6 transverse that account 

for the “missing” 6.  The situation is summed up in the following figure. 

 

Note that the 6 transverse components shared by the two RH side terms sum to zero, as they 

must do for the equivalence to hold.  If the LH side is the true defining formula then any 

calculations using only the Bv ×  term on the RH side must give the wrong result since it 

includes components that would be negated by the last term.  This is easily demonstrated in 

the Faraday disc homopolar generator where the convective Av )( ∇⋅  formula (or its full 

equivalent discussed here) yields half the output voltage as calculated using just the Bv ×  

motional induction.  That Bv ×  motional induction has been in use for so long that it beggars 

belief that it consistently yields incorrect results, hence this calls into question the whole 

validity of (A5). 
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