
 

The Av )( ∇⋅ Convection Term applied to the Faraday Disc 

Generator 
 

In cylindrical coordinates the vector AvE )( ∇⋅=−  is given by 
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where ar, aθ and az are the unit vectors.  In the Faraday homopolar generator we have 

a disc rotating about the z axis where vz =0.  The only induction of interest is the 

radial term, hence we only need consider the ar terms in (1) 
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The A field forms concentric circles about the z axis hence both Ar and Az are also 

zero, so this reduces to 
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We know that 

vθ = ωr         (4) 

where ω is the angular velocity and we also know that Aθ rises from zero at the center 

to a maximum value at the outer rim of the magnet, and its value at any radius r is 

given by 

 
2

Br
A =

θ
        (5) 

[This follows from the fact that the closed line integral of the A field is equal to the 

flux enclosed, hence with circular closures at radius r we obtain BrrA
22 ππ

θ
= ] 

Thus the induced radial E field as given by (3), (4) and (5) is 
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Br
Er

ω
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When integrated from center to rim R we get the voltage 
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2BR
Vhomopolar

ω
=        (7) 

The expected E = v X B induction when integrated from center to rim R gives rise to 

the well known homopolar voltage 

  
2

2BR
V opolarhom

ω
=        (8) 

Thus there is a discrepancy between the two methods!. 

 

Turning to the Faraday disc homopolar motor, we are interested in the force in the θ 

direction due to charge movement in the r direction.  Thus only the aθ terms in (1) are 

applicable 
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Since Ar=0, vz=0 and 0=
∂

∂

θ

θ
A

 this reduces to 
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From (5) we get 
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B
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θ  hence (10) becomes 
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Bv
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Whereas from E = v X B the induction is 

 BvE r+=
θ

        (12) 

which has twice the magnitude and is of opposite polarity to (11). 

 

Clearly something is wrong when the basic equation from which the supplementary 

one is derived does not give results that agree with the supplementary one.  Do we 

need to adjust the components in (1) by using partial derivatives of (unit) vectors as 

describes in Boast where 
θ

θ
a

a
=

∂

∂ r  and ra
a

−=
∂

∂

θ

θ ?  Let’s try it. 
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Removing all the zero terms leaves 
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Now the vθ terms have disappeared and that can’t be right. 

 

So let’s try doing it with rectangular coordinates.  From (5) the circular A field is 

given by 
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The terms of interest are 
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Taking the radial velocity along the x axis where y = 0 and therefore Ax = 0 we get 

simply 
2

Bv

x

A
vE xy
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−
=

∂
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−=  which is still out by a factor of 2 (the negative sign 

can be accounted for because we have used a CCW field and not a CW one.)  Using 

the convection formula gives the wrong answer for the homopolar machine so why 

should it give the correct answer for the slip ring machine? 
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With the homopolar A field forming circles in the rθ plane Az = 0 and 0=
∂

∂

z

A
 this 

reduces to  
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but if Ar = 0 and 0=
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θaB  which is out by 

a factor of 2.  The only way we can correct this is to put 
θ

θ
A
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∂
 then the second 

term becomes 
r

A
θ

−  and that puts things right. 
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With Az = 0, vz = 0  and 0=
∂

∂

z

A
this simplifies to  
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and with the substitution 
θ
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which now works for both homopolar motor and generator. 

 

Now look at the convective formula 
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with the substitution 
θ

θ
A

Ar
−=

∂

∂
 and from Boast’s description of vector 

differentiation we surmise rA
A
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Let’s compare the Bv ×  with the Av )( ∇⋅−  
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Now with vz and Az = 0 and 0=
∂

∂

z

A
 










∂

∂
+

∂

∂
−+










∂

∂
−

∂

∂
=×

θ

θ

θ

θ

θθ

θ

rr

r

r

r

A

r

v

r

A
v

A

r

v

r

A
v

a

aBv

 

 









−

∂

∂
−

∂

∂
−+









+

∂

∂
−

∂

∂
−=∇⋅−

r

AvA

r

v

r

A
v

r

AvA

r

v

r

A
v

r

r

rr

rr

θθθθ

θ

θθθ

θ

θ

a

aAv )(

 

Common 

terms 


