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Abstract

Special resonance circuits are investigated with circuit elements being paramet-
ric, i.e. variable in time. It is shown by simulation that energy from spacetime
is possible in certain cases. A variable capacitance can give rise to giant oscil-
lations, widely exceeding the limit of classical resonance theory. The resonance
can be limited to �nal values by a special design, making such devices relatively
easy to construct.
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1 Introduction

History has shown that power generation technology has progressed in the fol-
lowing steps; 1) Mechanical: by physical labor or machines, 2) Chemical: by
steam or re-combination of Hydrogen (H) & Oxygen (O) from either water or
fossil fuels, 3) Subatomic: by the exploitations in natures imbalances of certain
elements, and 4) Electromagnetic: by moving magnetic �elds over wires to pro-
duce voltage and current. Each step an obvious improvement of the latter and
all with a basic principle in common - Resonance.

At AIAS we further de�ne this basic principle as �Spin Connection Reso-
nance�(SCR [1]). The mechanical versions of parametric elements (L(t), C(t), R(t))
are usually driven so that their parameter changes in relation to the rotational
speed (rpm) of an electric motor. When these parametric element values are in
�consonance" to the resonant behavior of the rest of the circuit then we have
achieved SCR [1].

In this paper, we will study existing electromagnetic power generation [3]
with emphasis on the solid state version of the mechanical parametric circuits.
What we �nd is that parametric circuits transfers energy in the time domain by
drawing energy at one frequency and supplying energy at another frequency [6].
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Figure 1: Parallel & Series Circuit.

Additionally, we �nd that the energy transfered is dependent on the rate-of-

change of the parametric element at 1) d
dt , 2)

d2

dt2 [7] [8], and higher 3) dn

dtn . This
reveals that if the non-linear element (L(t), C(t), R(t)) is driven faster in time,
then additional power (Joules/seconds) can be drawn in from the time domain
at a rate higher than what the circuit can release as heat; thus, producing
available and useful power for additional loads.

2 Resonance in Circuits

In this section we discuss static (conventional) and parametric (time-varying,
dynamic) resonances.

2.1 Principles of Resonance in Static Circuit

First of all, let's study the current resonance in standard circuit analysis. For
instance, circuits with Resistance (R), Inductance (L) and Capacitance (C)
elements in a single network will result in second-order di�erential equations [9]
[10] [11]. Figure 1 shows the two basic parallel and series second order circuits.

Using the node voltage method for the parallel circuit and Kirchho�'s voltage
law for the series circuit our analysis gives:

Parallel Series

I1 + I2 + I3 = 0 V1 + V2 + V3 = 0 (1)

Now, with the proper substitution of elements shown below

Parallel Series

I1 = C1
dV0
dt

V1 = L1
dI0
dt

(2)

I2 =
V0
R1

V2 = R1I0 (3)

I3 =
1

L1

∫
V0dt V3 =

1

C1

∫
I0dt (4)

we end up with,

C1
dV0
dt

+
V0
R1

+
1

L1

∫
V0dt = 0 L1

dI0
dt

+R1I0 +
1

C1

∫
I0dt = 0 (5)
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now, for parallel we divide by C1 and for series by L1,

dV0
dt

+
1

R1C1
V0 +

1

L1C1

∫
V0dt = 0

dI0
dt

+
R1

L1
I0 +

1

L1C1

∫
I0dt = 0 (6)

and �nally we di�erentiate with respect to time d/dt.

d2V0
d2t

+
1

R1C1

dV0
dt

+
1

L1C1
V0 = 0

d2I0
d2t

+
R1

L1

dI0
dt

+
1

L1C1
I0 = 0 (7)

Lastly, we summarize with α

Parallel Series

α =
1

2R1C1
α =

R1

2L1
(8)

and common ω0,

ω0 =
1√
L1C1

(9)

to give

d2V0
d2t

+ 2α
dV0
dt

+ ω2
0V0 = 0

d2I0
d2t

+ 2α
dI0
dt

+ ω2
0I0 = 0 (10)

with �nal solution:

V0 = A1e
S1t +A2e

S2t I0 = A1e
S1t +A2e

S2t (11)

where S1 & S2 for both parallel and series circuits are,

S1 = −α+ β (12)

S2 = −α− β (13)

β =
√
α2 − ω2

0 . (14)

Thus the roots for the parallel circuits are,

S1(parallel) = − 1

2R1C1
+

√(
1

2R1C1

)2

− 1

L1C1
(15)

S2(parallel) = − 1

2R1C1
−

√(
1

2R1C1

)2

− 1

L1C1
(16)

and the roots for the series circuits,

S1(series) = − R1

2L1
+

√(
R1

2L1

)2

− 1

L1C1
(17)

S2(series) = − R1

2L1
−

√(
R1

2L1

)2

− 1

L1C1
. (18)

At this moment, great care should be taken to de�ne the β criteria as shown
in equation (14). On futher inspection, table 1 de�nes the results for the di�erent
type of oscillations. In this study, we are more interested in the imaginary result
of β so that energy is stored at each cycle at a rate higher than consumed by
resistance R.
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Damped Oscillations Criteria β Result

Over α2 > ω2
0 Positive

Critically α2 = ω2
0 Zero

Under α2 < ω2
0 Imaginary

Table 1: Damped Oscillations.

2.2 Principle of Resonance in Parametric Circuit

The serial resonance circuit (Fig. 2) represents a closed current loop consisting
of an inductance L, a capacitance C, a resistor R and a voltage source U . It is
a classical realization of a forced oscillation. According to Kirchho�'s law, the
sum of the respective component voltages is equal to the driving voltage:

UL + UR + UC = U. (19)

The voltages of the components depend on the time-dependent current I and
charge Q in the form

UL = Lİ, (20)

UR = RI, (21)

UC =
Q

C
. (22)

where the dot is the time derivative. The current simply is

I = Q̇. (23)

Consequently we obtain the di�erential equation for a damped forced oscillation

LQ̈(t) +RQ̇(t) +
Q(t)

C
= U(t) (24)

where the quantities Q, I and U are time dependent, the others are constants. If
a resonance circuit is excited by a pulse of U and then is left to its own resources,
it performs damped oscillations where the total energy remains constant, as can
be seen in Fig. 3.

Since the 1930's circuits have been studied [3] where some of the circuit ele-
ments are varying in time. Then Eq.(24) is not valid in general [4], it becomes
a more complex di�erential equation with non-constant coe�cients. Such equa-
tions are mostly not solvable analytically, therefore it was di�cult at that time
to predict the behavior of such circuits. Today these equations can simply be
solved numerically by computer and parameter studies are possible easily.

As we will see the total energy is not conserved when parametric circuits
are considered. We concentrate on one speci�c parametric circuit with a time-
varying capacitance. We will see that this is the most simple design to produce
excess energy. The basic de�nition of the charge in the capacitance (where
Eq.(22) was derived from) reads

Q(t) = UC(t) C(t) (25)

i.e. the charge is not in proportion to the voltage. Formally Eq.(19) remains
valid. There is no additional derivative because there was none in the de�ning
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Eqs.(22) and (25) 1. Practically, however, this means that with an oscillating
capacitance the nature of the circuit is principally changed. There is an energy
in- and out�ow to be expected.

We specify the circuit further by a driving voltage

U(t) = U0 sin(ω0 t) (26)

and an oscillating capacitance

Ceff (t) = C (1 + a0 sin(ω1 t+ ϕ)) , a0 < 1 (27)

with a phase factor ϕ. The driving voltage and the capacitance have the same
phase if ϕ = 0, ω1 = n · ω0.

Figure 2: Serial resonance circuit with driving voltage [2].

3 Simulation Results

The design described in [3], [4] is investigated �rst by simulation. Then an
alternative design is considered.

3.1 Design with Doubled Resonance Frequency

The simulation package OpenModelica [5] was applied to solve the time de-
pendent equations. The following parameters were used for the circuit (in SI
units):

U0 = 5.0 V (28)

C = 2.3 · 10−7 F (29)

L = 0.02 H (30)

R = 20 Ω (31)

fres = 1
2π
√
L C

(32)

ω0 = 2πfres (33)

ω1 = 2 ω0 (34)

a0 = 0.2 (35)

ϕ = 0 (36)

1if we used a variable inductance for example, we had to use the equation UL(t) =
d
dt
(L(t) I(t)) which leads to more terms according to the product rule.
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According to [3], [4] we used a sinus-like capacitance variation with twice the
resonance frequency (Eqs.(33, 34)). The behavior of the circuit was �rst checked
by modeling a classical resonance circuit with C = const. The results show
correctly that the current drops exponentially because of damping by the Ohmic
resistance (Fig. 3(a)). Total energy is constant (Fig. 3(b)). After some time
the whole energy of the oscillation being exchanged between the inductance
and capacitance has been dissipated by the resistance. If this circuit is driven
by a periodic voltage of the resonance frequency given by Eq.(32), the current
amplitude becomes maximal, about 0.25 A (see Fig. 4(a)). We did not consider
in Eq.(32) the shift of the resonance frequency by the resistance which changes
this value slightly. From Fig. 4(b) it can be seen that after the oscillation has
stopped the power loss (in Watts) is constant. This comes completely from the
driving voltage U because energy is conserved.

The results di�er totally as soon as the capacitance is made variable as
described in Eq.(27). The current now grows unlimited (Fig. 5(a)) and so does
the total energy. In Fig. 4(b) the dissipated power at the resistance is shown. In
the range considered it increases to about 100 W e�ectively (that is half the peak
values). The current amplitude of the resonant circuit with �xed capacitance is
shown as the blue line in Fig. 5(a) for comparison. It can clearly be seen that
the range of energy conservation is exceeded.

So far we drove the parametric circuit with the resonance frequency fres =
2346.6 Hz. In order to make technical use of this e�ect, the rising current
must be limited, otherwise the circuit will be damaged within fractions of a
second. Therefore sophisticated control electronics is required. However one can
reduce this e�ort considerably by driving the circuit with a frequency slightly
di�erent from the resonance frequency. Using f = 0.97f0 which is only 3%
below resonance, the current increases to an upper limit only, see Fig. 6(a).
Consequently, the power loss remains �nite, about 400 W e�ectively in the case
considered (Fig. 6(b)).

So far we used a parametric capacitance with twice the frequency of the
driving voltage and phase di�erence ϕ = 0. The phase shift can be optimized as
shown in Figs. 7(a),7(b). It is at maximum for ϕ = −π/2. Since the power loss
P = I2R depends quadratically on the current I, it is even much higher in this
case, amounting to about 1.5 kW e�ectively (Fig. 7(b)). Then the voltages at
the inductance and capacitance are about 4000 V, which is technically feasible.
With driving force of 5 V peak signal the current of 10 A �ows through the
voltage source, this could be considered as an input of 50 W compared to 4 kW
peak output. This is a remarkable COP of 200. The proposed design is adequate
for a small generator in households for example. The doubled frequency for the
parametric capacitance was proposed in [3]- [4] and explained therein. Our
simulations con�rm this design.

3.2 Design with Original Resonance Frequency

Alternatively, we simulated con�gurations where the parametric frequency of
the capacitance was identical to the resonance frequency:

ω1 = ω0. (37)

Then the parametric signal must be pulse-like, a sinusoidal wave form does not
produce the high COP in this case. We chose two waveforms, one with smooth
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spikes and a rectangular signal. In the former case we de�ned

Ceff = C
(
1 + a0 sin7(ω1t+ ϕ)

)
. (38)

To obtain an increasing current, the frequency had to be chosen f = 1.07f0. The
results are graphed in Figs. 8(a),8(b). The current grows exponentially. The
parametric signal is shown Figs. 8(b), together with the charge Q which begins
to oscillate in the time frame shown. Interestingly, the results were independent
of the phase shift. The charge oscillation adopts itself so that the behavior shown
in Fig. 8(b) occurs. It may be interpreted as a kind of "self-organization� which
is sometimes reported in connection with systems of high COP.

The interpretation of this behavior is more obvious when a rectangular signal
is used as shown in Fig. 9(a). While the capacitance is high (upper pulse
region), the charge oscillation is increased. This can be seen from the fact that
the amplitude in the upper half period is higher than in the preceding lower
half period of Q. In the falling interval, Q goes down exactly to the negative
of the positive amplitude value, there is no increase in this case. The second
interval is shorter because the capacity is minimized here. In [4] the observed
behavior has nicely been compared with a children's swing which is pushed on
one side. The case with the doubled parametric frequency can be compared
in this picture with the situation where the person stands on the swing and
"hunkers down and up� during each half-period. The�hunkering down� appears
with the doubled frequency of the swing.

Finally we observed another remarkable e�ect. The driving voltage can be
switched o� after one or two periods (Fig. 9(b)). It is even possible to omit the
driving voltage completely and give a small current pulse or charge separation
on the circuit initially. Then the oscillation of the capacitance is su�cient to
start the circuit oscillation and bring the system in the high COP regime. This
shows again that the system is self-organizing in a stable way. The results are
in accordance with solution (17) where a series circuit not driven by an external
source can show an ever increasing current. There is no energy input in this
type of capacitor switching, except a small switching energy input which does
not enter the calculation and will certainly be below 10 W while the output is
about 2 kW. Insofar the COP is even higher than in the �rst design.

4 Conclusions

We have designed and simulated a solid state version of a mechanical parametric
capacitor in a resonant circuit. The parametric switching can be realized by
transistors, leading to a complete �solid state� design. One recommendation is
to use Ideal MOSFET diodes for higher switching frequency, and other designs
deserves further study. It's common knowledge that the higher the frequency the
smaller the electrical components need to be; however, it is noted here that we
lose the ability to handle higher power with smaller components. Nonetheless,
the designs described in this article are good candidates to construct solid state
renewable energy devices that shuttles energy from the time domain.

Driving the parametric elements in a non-linear form give us new and useful
power as we saw from our simulations. Ide Osamu has also seen this e�ect in
rate-of-change of magnetic �ux by pulsing a transformer non-linearly [7], [8].
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Analogously, driving a parametric capacitor non-linearly will give us a similar
result but in the rate of change of electric �ux.

(a) Current (A) (b) Total energy (J)

Figure 3: (a) Current of a classical damped oscillator ciruit without external
voltage.
(b) Total energy in a classical damped oscillator ciruit without external voltage,
Etot = ER + EL + EC .

(a) Current (A) (b) Power loss (W)

Figure 4: Current (a) and dissipated power (b) in a classical damped oscillator
ciruit with driving voltage at resonance.

8



(a) Current (A) (b) Power loss (W)

Figure 5: (a) Current of the parametric circuit described by parameters of
Eqs.(28-36). For comparison: current amplitude of the original free oscillating
curcuit of Fig. 3a (blue curve).
(b) Dissipated power by the Ohmic resistance.

(a) Current (A) (b) Power loss (W)

Figure 6: Current (a) and dissipated power (b) of the parametric circuit for
frequency f = 0.97 f0.
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(a) Current (A) (b) Power loss (W)

Figure 7: (a) Currents for di�erent phase shifts between U and Ceff with
f = 0.97 f0. red: ϕ = −π/2, blue: ϕ = 0, green: ϕ = π/2.
(b) Dissipated power for phase shifts of (a).

(a) Current (A) (b) Ceff (F) and Charge Q/100 (C)

Figure 8: (a) Current for model with sin7 pulses, f = 1.07 f0, ω1 = ω0.
(b) Ceff and Q/100 for this model.
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(a) Ceff (F) and Charge Q/100 (C) (b) U (V), I (A)

Figure 9: (a) Ceff and Q/100 for model with rectangular pulses, f =
0.95 f0, ω1 = ω0.
(b) Interrupted driving voltage U and current I for this model.
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