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Abstract

This paper treats the simple example of heating a system from a given initial to a given
®nal temperature with minimum entropy production. The allowed control for the
process is the selection of K temperatures for intermediate heat baths. The problem is
suf®ciently simple to allow analytic approaches and we compare the optimal solution
with the solution prescribed by equal thermodynamic distance (ETD). We ®nd that
ETD coincides with the optimum if the heat capacity is constant. For a temperature-
dependent heat capacity, ETD deviates from the exact optimum. ETD however
matches the optimal solution to second order in 1/K.

1. Introduction

This paper treats a simple example of controlling a thermodynamic system in a multi-
step process by a sequence of contacts with generalized baths. The example illustrates
the asymptotically optimal control known as equal thermodynamic distance (ETD)
in a simple enough context to be analytically accessible. The simple example treated
here maps directly onto problems of industrial signi®cance including diabatic
distillation.

The example grew out of a controversy regarding the approximate optimality of
different schemes for controlling the temperatures of trays in a diabatic distillation
column [1±6]. The scheme presented here controls the temperature steps so as to
maintain a constant thermodynamic distance at each step. One competing scheme
maintained a constant average thermodynamic force (EOF) at each step. It is found
that ETD works better for the present example. We therefore present a detailed
comparison only between ETD and the true optimum and merely comment on the
comparison to EOF along the way.
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2. Coffee Cup Motel

We are interested in calculating the amount of entropy generated in multistep
processes. The present paper treats a simple example of such a process. In discussing
this example, we have found it useful to think in terms of an analogy we have dubbed
Coffee Cup Motel. In the analogy, our goal is to heat a cup of coffee while minimizing
entropy production. Suppose that there is a motel which has K vacant rooms, and each
room's temperature can be set arbitrarily. Each room is adjusted to be a little hotter
than the previous room (Fig. 1a). By allowing the coffee cup to equilibrate to a room's
temperature and then moving the cup to the next room at a higher temperature, we are
able to heat the coffee with very little entropy production. The coffee is brought into
the ®rst room with a temperature To and it equilibrates to its ®nal value Tf in the last
room. The optimization problem is to choose the temperatures of the intermediate
rooms such that the total entropy production is as small as possible. We stress that the
problem assumes complete equilibration at each step.

Fig. 1. The ®gure depicts a caricature process wherein a cup of coffee is heated by moving it to
successively hotter rooms.
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The solution to this problem is found to depend on the heat capacity of the coffee cup.
In the next section we analyse the case in which the coffee cup has a constant heat
capacity, C. It is then found that the approximate optimization method ETD re-
produces the exact solution, as does EOF. In the fourth section we analyse the con-
sequences of a temperature-dependent heat capacity, C�T�. This leads to differences
between the approximate optimization principles and the exact solution. In a con-
cluding section these results are put into a wider perspective.

3. Entropy Production for a Constant Heat Capacity

At each equilibration step, a small amount of entropy is generated due to the heat
exchange between the room and the coffee (Fig. 1b). The entropy generated in an
in®nitesimal ¯ow of heat dq � CdT from the coffee cup at temperature T to the room
at constant temperature Tj is

dSu � dScup � dSroom � C
1

T
ÿ 1

Tj

� �
dT : �1�

Integrating to equilibrium in room j, the total change in the entropy is

��Su�j �
�Tj

Tjÿ1

dSu � C ln
Tj

Tjÿ1

ÿ Tj ÿ Tjÿ1

Tj

� �
; �2�

where we note that the heat capacity of the room is large compared to C. To calculate
the total entropy generated throughout the K rooms of the overall heating process, we
need to sum over the K steps to get

�Su �
XK

j�1

��Su�j � C ln
Tf

To

ÿ K �
XK

j�1

Tjÿ1

Tj

 !
: �3�

Once Tf and To are speci®ed, the K ÿ 1 intermediate temperatures can be chosen
arbitrarily. The temperature steps are optimal when the total entropy production (3) is
a minimum.

3.1. Minimum Entropy Production

A necessary condition for minimizing entropy production is stationarity with respect
to a small change in each intermediate temperature, Ti, for 0< i<K. To obtain this
condition for some given i, it is convenient if we ®rst identify all those terms of (3) that
depend on Ti. Placing those terms at the beginning, we obtain

�Su � C
Tiÿ1

Ti

� C
Ti

Ti�1

� � � � ; �4�

where the ellipsis represents terms that do not depend on Ti.
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The stationarity condition is now easily calculated:

@�Su

@Ti

� C ÿ Tiÿ1

T2
i

� 1

Ti�1

� �
� 0; �5�

or equivalently,

Tiÿ1

Ti

� Ti

Ti�1

: �6�

This holds for each i; 0< i<K, showing that, in the optimal scheme, consecutive
temperatures all have a constant ratio. This constant ratio, 
, can be determined by the
condition


K � T0

T1

� T1

T2

� � � Tkÿ1

Tf

� To

Tf

: �7�

This enables us to write the common ratio explicitly as

Tiÿ1

Ti

� Tf

To

� �ÿ1=K

: �8�

Now substituting (8) into (3), allows us to formulate the minimum total entropy
production as a function of the number of steps K.

�SOPT
u �K� � C ln

Tf

To

ÿ CK � CK
Tf

To

� �ÿ1=K

�9�

3.2. Equal Thermodynamic Distance (ETD)

Equal thermodynamic distance gives a prescription for the optimal sequence of
temperatures by requiring that the thermodynamic distance traversed on each step Tjÿ1

to Tj be the same. This thermodynamic distance is found as an integral over the metric
in the thermodynamic variable space, and will be detailed below. This prescription has
been shown to be optimal for large K in a sense to be speci®ed below [7]. The
thermodynamic distance between two states of a system is the integral of the line
element

dL �
������������������������
ÿdXtD2SdX
p

�10�
where X is the column vector of extensive variables of the system and D2S is the
matrix of second derivatives of the entropy S with respect to the X's [8].

The example in this paper has only one thermodynamic degree of freedom and thus dL
takes the form

dL �
������������������������
ÿdUD2SdU
p

�
�����������
jD2Sj

p
� jdUj; �11�
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where U is the internal energy of the system. Using

dU � CdT �12�

and

d2S

dU2
� d

dU

1

T

� �
� ÿ 1

T2

dT

dU
� ÿ1

CT2
�13�

allows us to express the length element dL as

dL �
�����������������
C

T2
�dT2�

r
: �14�

We integrate (14) to obtain the length L�Tjÿ1; Tj�.

L�Tjÿ1; Tj� �
�Tj

Tjÿ1

����
C
p

T
dT �

����
C
p

ln
Tj

Tjÿ1

� �
�15�

Since in the ETD scheme we need to keep L�Tjÿ1; Tj� constant [7], (6) immediately
follows. ETD therefore reproduces the optimal solution for this simple example with
constant heat capacity. One may do a similar analysis using a constant average
thermodynamic force. This also results in (6) for the temperatures. We thus ®nd that
for a constant heat capacity

�SETD
u � �SEOF

u � �SOPT
u : �16�

4. Entropy Generation for an Arbitrary Heat Capacity

Integrating (1) to equilibrium in room j, the total change in the entropy now becomes

��Su�j �
�Tj

Tjÿ1

dSu �
�Tj

Tjÿ1

C�T� 1

T
ÿ 1

Tj

� �
dT: �17�

For notational convenience, we introduce

D�T� �
�T

To

C�T�dT: �18�

This results in

��Su�j �
�Tj

Tjÿ1

C�T�
T

dT � D�Tjÿ1� ÿ D�Tj�
Tj

: �19�
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To calculate the total entropy generated throughout the K rooms of the overall heating
process, we need to sum over the K steps to get

�Su �
XK

j�1

��Su�j �
�Tf

To

C�T�
T

dT �
XK

j�1

D�Tjÿ1� ÿ D�Tj�
Tj

: �20�

To minimize this expression, we are again faced with the problem of choosing the
K ÿ 1 intermediate temperatures.

4.1. Minimum Entropy Production (OPT)

We use stationarity as a necessary condition. To obtain this condition for some given i,
it is convenient if we ®rst identify all those terms of (20) that depend on Ti. Placing
those terms at the beginning, we obtain

�Su � D�Tiÿ1� ÿ D�Ti�
Ti

� D�Ti� ÿ D�Ti�1�
Ti�1

� � � � ; �21�

where the ellipsis represents terms that do not depend on Ti.

The stationarity condition is now easily calculated:

@�Su

@Ti

� C�Ti� 1

Ti�1

ÿ 1

Ti

� �
ÿ D�Tiÿ1� ÿ D�Ti�

T2
i

� 0: �22�

This condition can be rearranged to give

Ti�1 � Ti

1� D�Tiÿ1� ÿ D�Ti�
TiC�Ti�

: �23�

Note that this is a second order difference equation which may be solved by a shooting
method1.

4.2. Equal Thermodynamic Distance (ETD)

We may again integrate (14) to obtain the thermodynamic distance L�Tiÿ1; Ti�

L�Tiÿ1; Ti� �
�Ti

Tiÿ1

�����������
C�T�p
T

dT: �24�

1Since To is given, we can iteratively adjust the value of T1 until the desired value is obtained

for TK � Tf .

50 P. Salamon et al.

J. Non-Equilib. Thermodyn. � 2002 �Vol. 27 �No. 1



Thus the Ti's are chosen to give�Ti

Tiÿ1

�����������
C�T�p
T

dT � 1

K

�Tf

To

�����������
C�T�p
T

dT: �25�

Note that as a difference equation, this is only ®rst order and thus may be solved
explicitly without the need for the trial and error of the shooting method required for
OPT.

4.3. A Numerical Example

As expected, in all three schemes (OPT, ETD, and EOF), �Su approaches zero as K
approaches in®nity. This is in fact the case for any scheme in which all the temperature
changes Ti�1 ÿ Ti approach zero. Numerical comparisons of performance of the
schemes OPT, ETD, and EOF were carried out for large but ®nite K on a number of
examples. When the heat capacity does not vary appreciably, the agreement is very
good for all K. This is not surprising since both ETD and EOF are exact when the heat
capacity is a constant. Accordingly, we chose an example with a large change in C�T�
over the temperature range of interest. We consider the problem of heating (and
melting) a block of slightly impure ice (e.g. ice coffee) from 223.15 K to 323.15 K. In
this case, the heat of fusion gives a very large spike in the heat capacity at Tmelt. The
actual heat capacity curve for one mole of water with 0.01 molal impurities is shown
in Figure 2.

Fig. 2. The ®gure shows the heat capacity of the ice-water system with 0.01 molal impurity
heated from 223.15 K to 323.15 K.
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For illustration, two additional schemes are compared here also. The ®rst, LIN, uses a
linear temperature pro®le. The second, EOF, uses a pro®le based on keeping the
average thermodynamic force during each step constant. The temperature pro®les for
K � 100 are shown in Figure 3. Note that both OPT and ETD slow down signi®cantly
for the phase transition while LIN and EOF do not. The corresponding values of the
entropy production are shown in table 1.

4.4. Asymptotic Optimality

The K-dependence of �Su, in the asymptotic limit, for all four of our schemes takes
the form

�Su � A

K
; �26�

Fig. 3. The ®gure shows the temperature pro®les for the four schemes OPT (dotted), ETD
(solid), LIN (dashed) and EOF (diamonds) for heating the ice-water system with 0.01 molal
impurity from 223.15 K to 323.15 K

Table 1. Entropy production for heat-
ing the block of ice with 0.01 molal
impurity from 273.15 K to 373.15 K in
100 steps.

Scheme �Su

OPT 0.0507
ETD 0.0508
LIN 0.0765
EOF 0.0779
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where A is a constant, independent of K, but characteristic of the particular scheme,
and, of course, dependent on the heat-capacity function C�T�. In general,

AOPT � AETD; �27�

which re¯ects the usual statement [7, 8] that ETD is asymptotically optimal. When we
calculate these coef®cients2, we ®nd the general result that

AOPT � AETD � 1

2

�Tf

To

�����������
C�T�p
T

dT

 !2

: �28�

5. Discussion and Conclusions

We now summarize our ®ndings for the simple example. When the heat capacity is
independent of the temperature, both ETD and EOF reproduce the exact optimal
solution. When the heat capacity C depends on the temperature T, ETD gives a
temperature sequence that matches the minimum entropy production to order 1=K2

[9]. The arguments presented here lead only to a ®rst order match.

The coffee-cup-motel as a thermodynamic process is much more general than it
appears at ®rst glance. It applies mutatis mutandis to the problem of bringing a
thermodynamic system with n degrees of freedom from an initial state to a ®nal state
along any given path for which the temperature is an acceptable parameter. One
example of particular note is the sequence of temperatures that should be maintained
on the successive trays in a diabatic distillation column3. It can be shown that, for
binary distillation, assuming complete equilibration on each tray, this is equivalent to a
coffee-cup problem [8] in which the `̀ coffee'' is a coexisting 2 phase mixture where
the amounts of the liquid and vapor phases are given by the ¯ows V and L for a
minimum re¯ux column with an in®nite number of trays. Figure 4 shows the constant
pressure coexistence heat capacity for separating a 50% (by mole) mixture of benzene
and toluene to various purities. Note that C�T� changes by a factor of four which is
much less than in the melting ice example.

EOF also reproduces the optimal schedule exactly for constant heat capacity and does
well for heat capacities varying by as much as 50%. This probably accounts for the
good performance of the EOF temperature schedules in columns with not very high
purity requirements for which the heat capacity does not vary much (see Fig. 4).
A numerical comparison of the ETD and EOF schemes was carried out for small K
[4, 5]. In their study, one can see the approach of the ETD scheme to the optimal
scheme for the largest value of K used. The required values of K were deemed too
large to be of interest in that study. The lack of ®t of EOF in [4] led to the procedure
where the ¯ux-force expression was minimized with an increased number of

2The derivation of these formulas is rather long. The interested reader is referred to [9].
3Columns in which every tray is equipped with a heat exchanger.
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constraints [2]. The nature of the optimal path will vary according to constraints
[1, 10], and EOF is only valid if the transport paths are parallel [11].

If a certain total time, large compared to the relaxation time of the system, is alloted
for the K equilibrations, the optimal allocation of such time has the system spending
an equal number of relaxation times on each step. This is the so-called constant
thermodynamic speed cooling schedule in which the distance traversed per relaxation
time is constant. In the EOF scheme the time spent in rooms close to the melting
temperature would increase since the relaxation time depends on the heat capacity.
This would bring the EOF solution closer to OPT and ETD. We remark that if the
temperature can be continuously varied, rather than varied in the stepwise fashion
discussed here, a ®xed total time implies that constant entropy production rate is the
correct asymptotic principle [12, 13, 14]. For stepwise control, however, ETD gives
the correct asymptotic result and works quite well even for moderate number of steps
[2, 3].
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Fig. 4. The effective heat capacity as a function of temperature for a distillation process
separating a 50% mixture of benzene and toluene to 90%, 95%, and 99% purities. The
discontinuity at 366 K corresponds to the feed point.
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