
Proof for Tinman’s Gravity Machine. 

 

Here are the two situations for Tinman’s system before launch and after return to earth. 

 

We will take the reference plane as the geometric centre of the tubes.  We will take the total 

mass of the tubes completely filled with water as M.  We will take the mass of water needed 

to fill the spheres as m.  Thus the actual mass is close to M-m but we also want to take 

account of the distance x of the spheres from the centre line.  Gravity follows an inverse 

square law so we can write for the force on a tube completely filled with water as 
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where K is a constant and R is the distance from our reference plane to the centre of the earth.  

But the tube has an amount m missing and the force on that missing part of the LH tube would 

be 
2)( xR

Km
Fm

+

= .  Thus the actual force FLH on the tube is 
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very slightly different to the downward force on the normally assumed actual mass M-m 

because we assume that gravity is uniform within our laboratories, but it isn’t.  It’s only a tiny 

tiny difference but when taken over the vast distances used by Tinman to get to outer space 

where gravity is reduced to one tenth it becomes significant.  By the same argument the 

downward force FRH on the RH tube is 
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forces are shown in the next figure as Kg weight, using Tinman’s 7500Kg for M and 449Kg 

for m. 

 

Now let’s see what those slightly different weights mean when calculating the energy needed 

to raise them to outer space where gravity is one tenth.  Clearly we expect the slightly greater 

weight to need slightly more energy, and this means that we cannot assume that the energy 

needed to reach outer space is exactly equal to the energy gained when falling back to earth. 

Reference plane 

x 

x 

Reference plane 

Weight = 7051.00063Kg Weight = 7050.99937Kg 



Because of the inverse square law the distance from the earth’s centre to get one tenth the 

gravity force is R×10  so the energy WLH needed to raise the LH tube to that height is given 

by the definite integral 
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By the same argument the energy WRH needed to raise the RH tube to that height is given by 
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The difference between (1) and (2) is 
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which is independent of the mass M. 

Solving the integral yields 
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Taking to a common denominator 
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Because r>>x over the integration range we can use the very good approximation 
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But 
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K
 is earth’s acceleration g and 2x is the distance h between the two spherical volumes.  

Hence WDIFF can be written as 
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This is the energy expended in going to outer space and back again.  There is also energy 

expended while in outer space in pulling the top sphere down against buoyancy which in the 

1/10 gravity is (1/10)mgh.   Total energy WEXP expended is therefore 

mghWEXP −=  

where the minus sign represents expenditure.  But we have not yet completed the cycle.  We 

let the lower sphere rise under buoyancy force where we gain energy WGAIN 

mghWGAIN =  

Thus after the buoyancy rise there is an energy balance, we have got back exactly the amount 

of energy we lost. 

 

Tinman has since pointed out that when the hollow sphere rises under buoyancy an equivalent 

amount of water falls the same amount, and the energy associated with that rise has not been 

accounted for.  However it can be shown that when that happens there is a change of potential 



energy of the system, and that change of potential energy accounts for the fall of that water.  

This change in potential energy is rarely considered because it cannot be put to practical use, 

it is the energy that would be gained if we had a mineshaft that reached to the centre of the 

earth where gravity is zero, and we let the mass fall down to that point.  The formula for 

acceleration g down that mineshaft is 
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where r is the distance from the earth centre, R is the earth radius and K is that used above.  

The energy gained in falling from r=R to r=0 is given by the definite integral 
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where the m is the change of mass from 7050.99937Kg to 7051.00063Kg as described earlier.  

That calculates exactly as mgh.   Thus the falling water of energy value mgh is exactly 

accounted for by the change in potential energy of the system. 


