
Proof for Tinman’s Gravity Machine. 

 

Here are the two situations for Tinman’s system before launch and after return to earth. 

 

We will take the reference plane as the geometric centre of the tubes.  We will take the total 

mass of the tubes completely filled with water as M.  We will take the mass of water needed 

to fill the spheres as m.  Thus the actual mass is close to M-m but we also want to take 

account of the distance x of the spheres from the centre line.  Gravity follows an inverse 

square law so we can write for the force on a tube completely filled with water as 
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where K is a constant and R is the distance from our reference plane to the centre of the earth.  

But the tube has an amount m missing and the force on that missing part of the LH tube would 

be 
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very slightly different to the downward force on the normally assumed actual mass M-m 

because we assume that gravity is uniform within our laboratories, but it isn’t.  It’s only a tiny 

tiny difference but when taken over the vast distances used by Tinman to get to outer space 

where gravity is reduced to one tenth it becomes significant.  By the same argument the 

downward force FRH on the RH tube is 
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forces are shown in the next figure as Kg weight, using Tinman’s 7500Kg for M and 449Kg 

for m. 

 

Now let’s see what those slightly different weights mean when calculating the energy needed 

to raise them to outer space where gravity is one tenth.  Clearly we expect the slightly greater 

weight to need slightly more energy, and this means that we cannot assume that the energy 

needed to reach outer space is exactly equal to the energy gained when falling back to earth. 
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Because of the inverse square law the distance from the earth’s centre to get one tenth the 

gravity force is R×10  so the energy WLH needed to raise the LH tube to that height is given 

by the definite integral 
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By the same argument the energy WRH needed to raise the RH tube to that height is given by 
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The difference between (1) and (2) is 
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which is independent of the mass M. 

Solving the integral yields 
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Taking to a common denominator 
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Because r>>x over the integration range we can use the very good approximation 
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But 
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K
 is earth’s acceleration of 9.81m/s

2
 hence this energy difference is 9/10 of the 

buoyancy energy retrieved when the ball rises the distance 2x at the final count.  Put another 

way the energy needed to raise the system to that outer space region is nine tenths of that 

buoyancy energy greater than the energy reclaimed on the fall from that region.  Add to that 

loss the one tenth needed to pull the ball down when at that outer space region and we find 

that all the energies are accounted for. 


