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Preface 

 
The possibility of producing excess energy is a much-disputed question nowadays. Does the law of 
energy conservation – as a postulate – have general validity, or can it be violated under certain 
circumstances? In order to make a correct conclusion about this matter, instead of subjective 
prejudices, it is preferable to objectively examine the subject within the context of the known laws 
of physics, thus maintaining consistency with the practice. 
 
The objective of this study is to examine whether it is possible to violate the generally accepted law 
of energy conservation in the field of electromagnetic waves. 
 
The discussion of energy correlations in the field of electromagnetic waves does not imply the 
restriction of this problem to a narrow area, since the laws of wave propagation cover a wide 
spectrum, from sound waves to X-rays, as well as the Compton effect and the de Broglie waves 
related to the particles. Thus they are applicable in a fairly wide area of physics. Consequently, the 
question of energy conservation, aside from its theoretical significance also has a practical 
importance, owing to the energy demand of present and future, as well as to the protection of the 
environment (which is not negligible). Therefore it may interest not only theoretical experts and 
physicists, but also professional teachers and students, and those dealing with practical problems. 
 
The composition of this material serves to illuminate this problem from multiple points of view, 
together with the mathematical demonstrations required for the exact discussion. From the side of 
the reader it presumes the knowledge of higher mathematics, theoretical electronics, and antenna 
theory, but the essence will be clear even without these. The aim of the detailed mathematical 
demonstrations used in certain sections is also to promote a better perspective and understanding. 
 
This summary material is the result of many years of work (under circumstances, which could not 
be called ideal). For that very reason I express my gratitude to all those who helped me in this work, 
especially to the head oculist Dr. Zoltán Vass at the hospital in Baja and his colleagues, who made 
the writing of this material possible by their selfless healing work, as well as to the publisher of this 
study. 
 
Budapest 1998 
 
 The author 
 János Vajda 
 Dipl. Electrical Engineer 
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Introduction 
 

The natural sciences – specifically physics – derive their laws by observing the phenomena and 
occurrences in practice through experimentation and measurements. In many cases we can derive 
new laws directly from calculations using the already known facts, omitting the expensive 
experiments and measurements. Of course, the laws derived in this way should be confirmed by 
empirical evidence. 
 
It happens even in the area of natural sciences that in certain cases we have to rely on axioms and 
postulates. In certain cases we can make an attempt to re-examine a postulate, which might be 
specially justified in such cases, when the phenomena and occurrences contradict or seemingly 
contradict them. The law of energy conservation is such a postulate, and its examination is the very 
purpose of this study (within the field of electromagnetic waves). A well grounded justification is 
provided for performing such calculations (analysis) – in accordance with these objectives – by the 
following empirical phenomena. 
 
As it is already known, based on the superposition of electromagnetic fields, the power (or energy) 
density which can be measured in a certain point of geometrical space is proportional to the square 
of the vectorial sum of the electromagnetic field intensity vectors present at that point. However, 
according to the law of energy conservation, this resultant power is supposed to be equal to the sum  
of each single wave’s power – namely equal to the sum of the square of each single field intensity 
vector present at that point. We can put this into mathematical form in the following manner e.g. 
with the vectors of electric field intensities, but it is also valid in the same way for the vectors of 
magnetic field intensities. Let us signify the individual electric field intensity vectors with 

1 2 3, , ,...,
n

E E E E
� � � �

, then we can write with the “k” proportionality coefficient that: 

 

 ( ) ( )
2

2 2 2 2
1 2 3 1 2 30 ... ...

n n
k E E E E k E E E E≤ + + + + ≤≥ + + + +
� � � � � � � �

 

 Experience law of energy conservation 
 
From this we can conclude that in the case of electromagnetic fields, the law of energy conservation 
can be violated at certain points of geometrical space. 
 
We can arrive to the same conclusion by observing the radiant characteristics of the antennas. Let 
there be given two identical antennas oriented in the same direction, both are fed from the same 
generator with identical frequencies, identical phase, and identical powers. If the two antennas 
radiate with identical polarization, then the individual field intensities in far-space, created by each 
of the antennas in the main direction of radiation will be summed up – namely the resultant field 
intensity will be double – and therefore the power density will be four times the field intensity and 
power density created by one single antenna at that point respectively. On the other hand, according 
to the law of energy conservation, the individual powers are supposed to add together. Thus the 
resultant power density supposed to be only the double the value of the power density created by 
each antenna at that point. Consequently, in this case in the main direction of radiation of the two 
antennas the law of energy conservation will be violated. However, if the two antennas radiate with 
identical polarization, but with a phase difference of 90°; or with identical phase, but with 
perpendicular polarization to each other, then the law of energy conservation will remain valid (not 
only in the primary direction, but in all directions). 
 
In connection with the above discussion, the “usual” argument to support the inviolability of the law 
of energy conservation is that the local deviations (in ± direction) appearing at the individual points 
(or regions) in the geometrical space – resulting from the rules of superposition and interference – 
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will mutually neutralize each other within the whole (closed) volume of space, and therefore the law 
of energy conservation will not be violated. This seems to be an attractive idea, but – as it will come 
to light later – it is not without merit to verify the general validity of this statement with 
calculations. 
 
To support the justifiability of the examination of the law of energy conservation, we can also 
mention the following empirical fact. In the case of the “double T” or “magic T” well known in the 
microwave technology as an eight-pole, if we connect signals with identical frequency, phase, and 
amplitude to the input gates, then each of the input powers fed into the input gates will be halved 
towards the output gates. But towards one of the output gates the two field intensities will be in 
counter-phase and they will “extinguish” each other, therefore the output power will be zero. The 
other two halves of power from the input gates proceed towards the other output gate with identical 
field intensities and they will be added together. Therefore on this output gate we can measure a 
value of power identical with the total input power as a result of the two single halves of input 
power, namely the half of the total input power. On the basis of this measurement result we can 
justifiably ask: how can this phenomenon be explained without the violation of the law of energy 
conservation? Namely, that on one of the output gates the total input power appears as the effect of 
the half of the total input power. And where did the other half of the total input power disappear 
(since the output power of the other output gate happens to be zero)? 
 
On the basis of the empirical facts described above we can justifiably begin performing the 
calculations (analysis) in accordance with our object. During the calculations we will assume that 
the reader has a general knowledge of the related theory of electromagnetism, vector analysis, and 
antenna theory (which can be found in the cited summary literature), therefore we will not go into 
the detailed description of the laws, correlations, terms, and methods applied below. 
 
The notations used in the calculations are also as customary, and their meanings will appear in the 
text or in the illustrations. Generally it is sufficient to perform the examinations for the case of two 
waves, and then based on this we can also set up the correlations valid for the cases with more than 
two waves (radiation). 
 
In the analysis we will use the expressions and approximations customary to this subject. So, for 
example in the case of wave propagation we assume a lossless and linear free space, and in the case 
of wave- (or radiation-) sources we assume that the total power of the sources will be radiated out 
without any loss. Occasionally we will use approximations that are accepted for the propagation of 
waves in far space. At certain points the derived results will be interpreted also for cases, where the 
expressions and approximations will be modified. For the calculations the wave radiating sources 
are assumed to be antennas, but this does not limit the validity of the derived results, since we will 
apply their radiant characteristics (parameters) with the correlations valid for them (and in 
accordance with practice). 
 
In Summary: the task we have set as an aim of this paper is to determine the power- and energy 
correlations of the electromagnetic spherical waves in the field of radiation, radiated – 
simultaneously – into free space from several sources; together with the comparative evaluation of 
the radiated powers versus the radiant power of the resultant wave, in order to determine whether 
the law of energy conservation can be violated or not, and if yes then under what circumstances. 
The analysis of the problem has been performed from multiple points of view according to the 
points listed in the contents, including the Maxwell equations, and describing a few numerical 
(practical) calculation results as well.
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1. The power and energy of the electromagnetic waves in vectorial form 
 
We can determine the power- and energy correlations of waves spreading in free space based on 
figure 1. As is known, for the value of power Ps=Pout radiated through the closed surface A by an 
antenna (source of radiation) placed within the volume V at point O, which is fed with power Pin, we 
can write the following (independently of the shape of surface A): 

( )s out in

A A

P P SdA E H dA P= = = × =∫ ∫
� � �� �

� �  

Namely at the inputs we assume that the antenna will radiate out the total input power. 
  

 

Notations: 
 

S E H= ×
� � �

 Poynting vector at point Q 

 and E H
� �

 electric- and magnetic field intensity 
vectors at point Q 

λ  wave length  

dA
�

 elementary surface vector at point Q 

Pin input power of the antenna at point O 

V volume bound by the closed surface A 

Ps=Pout the total power radiated through 
surface A 

Fig. 1. 
 
Let us place two antennas within volume V at different points O1 and O2, and let us connect to their 
inputs – not simultaneously – powers Pin1 and Pin2, then using indexes 1 and 2 in the above sense we 
can write that: 

 ( )1 1 1 1 1 1s out in

A A

P P S dA E H dA P= = = × =∫ ∫
� � �� �

� �  (1.1) 

 ( )2 2 2 2 2 2s out in

A A

P P S dA E H dA P= = = × =∫ ∫
� � �� �

� �  (1.2) 

These equations (in accordance with our reservations) do satisfy the law of energy conservation, 
since the input powers will appear on the closed surface as radiant powers.  
 
Let us connect now the input powers to the antennas simultaneously. 
 
As is known, in the case of radiation originating from two sources the field intensities will add up in 
vectorial form, namely the interference of two waves will take place in the space. Thus, for the case 
of simultaneous radiation we can write (where index r refers to the resultant quantity): 

 ( ) ( )1 2 1 2r
S E E H H= + × +
� � � � �

 

From the distributive property of the vectorial multiplication follows that: 

 ( ) ( ) ( ) ( )1 1 2 2 1 2 2 1r
S E H E H E H E H= × + × + × + ×
� � � � � � � � �

 

With the earlier ( ) ( )1 1 1 2 2 2 ; S E H S E H= × = ×
� �� � � �

 notations: 

 ( ) ( )1 2 1 2 2 1 1 2r
S S S E H E H S S S= + + × + × = + + ∆
� � � � � �� � � �

 (1.3) 

where: ( ) ( )1 2 2 1S E H E H∆ = × + ×
� � � � �

 (1.4) 
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Now knowing
r

S
�

, the resultant radiant power output (Ps)r=(Pout)r  flowing out through the surface A 

is: 

 ( ) ( ) 1 2s out rr r

A A A A

P P S dA S dA S dA SdA= = = + + ∆∫ ∫ ∫ ∫
� � � � � � � �

� � � �  (1.5) 

We have seen in the preceding that 1 1 2 2 and 
in in

A A

S dA P S dA P= =∫ ∫
� �

� �  

So we can write the following: 

 ( ) ( ) ( )1 2s out in in inr r r

A

P P P P SdA P P= = + + ∆ = + ∆∫
� �

�  

where the total input power is: ( ) 1 2in in inr
P P P= +  

and the ∆P power difference is: 

 ( ) ( )1 2 2 1

A A

P SdA E H E H dA ∆ = ∆ = × + × ∫ ∫
� � �� � � �

� �  (1.6) 

Applying the Gauss theorem for the value of ∆P we can write that: 

 ( ) ( )1 2 2 1div div
V V

P SdV E H E H dV ∆ = ∆ = × + × ∫ ∫
� � � � �

 (1.7) 

We can see that the source density of ∆P per unit volume is: div S∆
�

 
 
The above correlations are valid for the case of simultaneous radiation from two sources. In the case 
of the simultaneous presence of electromagnetic waves originating from more than two sources  
(n-sources) we can write that: 

 ( ) ( )
1 1 1

n n n

r k k k
n

k k k

S E H S S
= = =

   
= × = + ∆   
   
∑ ∑ ∑

� � �� �
 where ( )k k k

S E H= ×
� � �

 

By expounding this equation – similarly as above – we can arrive at the following results: 

( ) ( )n n
A

P S dA∆ = ∆∫
� �

�   where: ( ) ( )
1 1

n n

k mn
k m

S E H
= =

∆ = ×∑∑
� �

 here k≠m 

 ( ) ( ) ( ) ( )
1

n

sr out inn n k n
k

P P P P
=

= = + ∆∑  where: ( )in kk

A

P S dA= ∫
� �

�  (1.8) 

 ( ) ( ) ( )div
n n n

A V

P S dA S dV∆ = ∆ = ∆∫ ∫
� � �

�  (1.9) 

Prior to the evaluation of the correlations derived so far, it is necessary to emphasize that the 
calculated quantities represent the momentary values in time, therefore the power correlations can 
be converted directly into energy correlations only after averaging them in time. 
 
Evaluating the derived results we can make the following statements: 

It is rather surprising that in the case of two simultaneous waves, in both expressions of 
r

S
�

 and 

Psr=Poutr  will appear also an additional S∆
�

 and ∆P difference quantity respectively. This fact can 
be made consistent with the law of energy conservation only in special cases. Namely, in order to 
protect the law of energy conservation it would be highly irresponsible – and at the same time a 
mathematical contradiction – to state with general validity (for all cases in time, geometrical 
configuration and for the electric parameters of the radiating sources at will) that these differential 
quantities can have only zero value in all cases. 
 

It seems to be advisable to examine the values of S∆
�

 and ∆P for simultaneous waves in some 
special cases.
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1/a. Two perpendicularly polarized waves 
 

With symbolic notation 1 2 2 1 and E H E H
� � � �
� �  but as we know 1 1 2 2 and E H E H⊥ ⊥

� � � �
. This condition 

represents two waves with polarization perpendicular to each other. It can be understood that the 
circularly polarized wave also belongs to this category, since it is the resultant of two waves with 
perpendicular polarization to each other and 90° phase shift originating from the same source. 
 
In this case, since the vectorial product of parallel vectors is zero, we get:  

 ( ) ( )1 2 2 1 0S E H E H∆ = × + × =
� � � � �

 thus 0
A

P SdA∆ = ∆ =∫
� �

�  (1.10) 

Further, for effective values we can also write that: 

0

1
0

eff
S Sdt

τ

τ
∆ = ∆ =∫
� �

 and so 
0

1
0

eff
P Pdt

τ

τ
∆ = ∆ =∫  

where τ signifies the time period. 

 
Thus we can state for this case that the law of energy conservation is valid, when the radiant 
(output) power or energy is identical with the input power or input energy respectively.
 



 

 
1/b. Waves with different frequencies 

János Vajda: VIOLATION OF THE LAW OF ENERGY CONSERVATION IN WAVE FIELDS 

10 

1/b. Waves with different frequencies 
 

In this case the frequencies (ω = 2πf) of the generators feeding the radiating sources are different 

from each other, that is ω1≠ω2≠ω3≠…≠ωn. 

Let us choose the time-function to be sine. In such a case the field intensity vectors of each wave 

belonging together at the examined point Q, can be written in the following form, where φ signifies 

the phase, 0E
�

 and 0H
�

 the amplitude vectors – depending only on space coordinates – including the 

polarization. 

 ( ) ( )0 0sin  ; sin  ; 
r

E E t H H t
c

ω φ ω φ φ ω= − = − =
� � � �

 

where r signifies the distance of point Q from the source, and c – the speed of light. 
 
For the case of two waves using these notations we can write that: 

 ( ) ( ) ( )1 1 1 01 1 1 01 1 1sin sinS E H E t H tω φ ω φ   = × = − × −   
� � � � �

 

and for the index #2 similarly deriving 2S
�

, and by multiplying out the time factors: 

 ( ) ( ) ( ) ( )2 2
1 01 01 1 1 2 02 02 2 2sin  ; sinS E H t S E H tω φ ω φ= × − = × −
� �� � � �

 

 ( ) ( ) ( ) ( ) ( ) ( )01 02 1 1 2 2 02 01 2 2 1 1sin sin sin sinS E H t t E H t tω φ ω φ ω φ ω φ∆ = × − − + × − −
� � � � �

 

 ( ) ( ) ( ) ( )01 02 02 01 1 1 2 2sin sinS E H E H t tω φ ω φ ∆ = × + × − − 

� � � � �
 

As we have seen earlier, for the resultant of the momentarily radiated powers we get: 

 1 2 1 2sr outr in in

A A A

P P S dA S dA SdA P P P= = + + ∆ = + + ∆∫ ∫ ∫
� � � � � �

� � �  

The effective (time-average) power can be obtained by integration through τ time period. 

 ( ) ( ) ( ) ( )
1 2

1 2 1 2
1 20 0 0

1 1 1
sr outr in in effeff eff eff eff

t A t A t A

P P S dAdt S dAdt SdAdt P P P

τ τ τ

τ τ τ
= = =

= = + + ∆ = + + ∆∫ ∫ ∫ ∫ ∫ ∫
� � � � � �

� � �  

By putting the time functions into different forms for the calculation of the integrals we get: 

 ( ) ( )2
1 1 1 1

1 1
sin cos 2 2

2 2
t tω φ ω φ− = − −  

 ( ) ( )2
2 2 2 2

1 1
sin cos 2 2

2 2
t tω φ ω φ− = − −  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2 1 2

1 1
sin sin cos cos

2 2
t t t tω φ ω φ ω ω φ φ ω ω φ φ− − = − − − − + − +        

Further, as is known, the mean value of the following type of integral for one period is: 

 
0 0 0

1 1 1 1
cos( ) cos(2 ) sin(2 ) 0  where  

2
t t t

t t
t dt dt

f

ττ τ

ω φ π φ π φ τ
τ τ τ π τ

= = =

− = − = − = =∫ ∫  

Thus after the integration by time we get the effective powers (since the integrals calculated for 
time periods containing time functions with cosines will be zero): 

 ( ) ( ) ( )01 01 01 01
1 1 1 1

1
  ;  

2 2 2in eff eff eff
A A A

E H E H
P S dA dA S dA S

× ×
= = = =∫ ∫ ∫

� � � �
� � � � � �

� � �  

 ( ) ( ) ( )02 02 02 02
2 2 2 2

1
  ;  

2 2 2in eff eff eff
A A A

E H E H
P S dA dA S dA S

× ×
= = = =∫ ∫ ∫

� � � �
� � � � � �

� � �  

 ( ) ( )01 02 02 01

0

1
0 0

eff

t A A

P SdAdt E H E H dA

τ

τ
=

 ∆ = ∆ = ⋅ × + × = ∫ ∫ ∫
� � �� � � �

� �  (1.11) 



 

11 
1/b. Waves with different frequencies 

János Vajda: VIOLATION OF THE LAW OF ENERGY CONSERVATION IN WAVE FIELDS 

The ( ) ( )1 2and 
eff eff

S S
� �

 (the mean values in time) are the well known Poynting-vectors, for 

electromagnetic waves with sine or cosine time functions. 
 

It can be understood even without extra proof that we get ∆Peff=0 also in the case of n-pieces of 

simultaneous waves (in spite of the fact, that the momentary value of ( )
n

S∆
�

is not necessarily zero). 

Namely, in each part (partial product) of the ( )
n

S∆
�

vector with time functions figures a product of 

sine functions with different frequencies, and as we have seen, the time integral of these calculated 
for one time period is zero. 
 
To summarize, we can state that in the case of any number of simultaneous waves, but with 
different frequencies there is no effective power difference, thus the law of energy conservation is 
valid. 

 ( ) ( ) ( )
1

n

outr sr inkeff eff eff
k

P P P
=

= =∑  (1.12)
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1/c. Coherent waves with identical frequencies 
 

In this case for the frequencies we can write that ω1=ω2=ω3=…=ωn=ω0. Based on the analysis in 

the previous 1/b passage, the correlations valid for the two waves in this case are: 

 ( ) ( ) ( ) ( )2
1 01 01 0 1 01 01 0 1

1 1
sin cos 2 2

2 2
S E H t E H tω φ ω φ

 
= × − = × − −  

� � � � �
 

 ( ) ( ) ( ) ( )2
2 02 02 0 2 02 02 0 2

1 1
sin cos 2 2

2 2
S E H t E H tω φ ω φ

 
= × − = × − −  

� � � � �
 

 ( ) ( ) ( ) ( )01 02 02 01 0 1 0 2sin sinS E H E H t tω φ ω φ ∆ = × + × − − 

� � � � �
       φ1≠φ2 since r1≠ r2. 

After integrating by time we get: 

 ( ) ( ) ( )01 01 01 01
1 1 1  ;  

2 2in eff eff eff
A A

E H E H
P dA S dA S

× ×
= = =∫ ∫
� � � �

� � � �

� �  

 ( ) ( ) ( )02 02 02 02
2 2 2  ;  

2 2in eff eff eff
A A

E H E H
P dA S dA S

× ×
= = =∫ ∫
� � � �

� � � �

� �  

Since ( ) ( )1 2 1 2cos cosφ φ φ φ− − = −    for the time factor S∆
�

 we can write that: 

 ( ) ( ) ( ) ( )0 1 0 2 1 2 0 1 2

1 1
sin sin cos cos 2

2 2
t t tω φ ω φ φ φ ω φ φ− − = − − − +    

Thus the value of the effective power difference is: 

 
( ) ( )

( ) ( )01 02 02 01

1 2cos
2eff

eff
A A

E H E H
P dA S dAφ φ

× + ×
∆ = − = ∆∫ ∫

� � � �
� � �

� �  

If the starting phases of the sources φ01=φ02 are identical, then for the value of (φ1-φ2) (where r1 and 

r2 are the distances of the sources from the point Q) we can write that: 

 ( ) ( ) 1,21 2 0 1 2
1 2 0 0 1 2

0 0

2
2 2

rr r f r r
r r

c c c

π
φ φ ω ω π π

λ λ

∆−
− = − = − = =  

( )0 1,2 1 2
0

  and  
c

r r r
f

λ = ∆ = −  is the distance difference of the two waves. 

So in the case of φ01=φ02 for ∆Peff  we can write that: 

 
( ) ( )01 02 02 01 1 2

0

cos 2
2eff

A

E H E H r r
P dAπ

λ

× + ×  −
∆ =  

 
∫

� � � �
�

�  

Here the effective value of Poynting vector difference is (after the model of ( )1
eff

S
�

and ( )2
eff

S
�

): 

 ( )
( ) ( )01 02 02 01 1 2

01 02
0

cos 2   if:  
2eff

E H E H r r
S π φ φ

λ

× + ×  −
∆ = = 

 

� � � �
�

 (1.13) 

The cosine factor in ∆Peff  will remain under the sign of integral, since it is the function of  

r1 and r2 distances; thus we have to take it into consideration while integrating by surface. 

If φ01 and φ02 starting phases are not identical at the wave sources, then for the general form of ∆Peff 

we get:  ( ) 1,21 2 1 2
0 01 0 02 01 02 01,2

0 0

2 2
rr r r r

c c
ω φ ω φ π φ φ π φ

λ λ

∆−   
− − − = − − = − ∆   

   
 

 
( ) ( )

( )
01 02 02 01 1 2

01 02
0

cos 2
2eff

A

E H E H r r
P dAπ φ φ

λ

× + ×  −
∆ = − − 

 
∫

� � � �
�

�  (1.14) 
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Based on the analysis up to this point we can see, that for the case of simultaneous presence of n 

pieces of waves with identical ω0 frequency we get: 

 ( ) ( ) ( ) ( ) ( ) 0 0

1

  ;  
2

n

k k
sn outn ink n inkeff eff eff eff eff

k A

E H
P P P P P dA

=

×
= = + ∆ =∑ ∫

� �
�

�  (1.15) 

 ( ) ( )0 0
0 0

1 1 0

cos 2   ;  
2

n n
k m k m

n k m
eff

k m

E H r r
S k mπ φ φ

λ= =

 × −
∆ = − − ≠ 

 
∑∑

� �
�

 (1.16) 

 ( ) ( )0 0
0 0

1 1 0

cos 2   ;  
2

n n
k m k m

n k meff
k m A

E H r r
P dA k mπ φ φ

λ= =

 × −
∆ = − − ≠ 

 
∑∑ ∫

� �
�

�  (1.17) 

As a reminder it is reasonable to mention that the correlations derived for the effective values now 
signify a mean value in time, thus intelligibly they are valid also for the energy states with waves 
without amplitude modulation. 
 

In the case of ω1=ω2=ω3=…=ωn=ω0 simultaneous coherent waves we can state the followings: 

( ) 0
n

eff
S∆ ≠
�

 thus the law of energy conservation will be locally violated, since the zero value at the 

specific point will appear only in exceptional cases. 
 

Although the (∆Pn)eff  power difference given at 1.17 can have zero value regarding the closed 

surface A in spite of ( ) 0
n

eff
S∆ ≠
�

, but this is possible only in exceptional cases. Namely the integral 

under 1.17 is the function of several variable quantities (space coordinates, the radiation 
characteristics of the radiation sources and their polarization, their relative position in space and the 
starting phases at their input), thus it would be a mathematical contradiction to state generally that 
the value of this integral should be zero in all cases. From this follows that the law of energy 
conservation – for the space V bound by the closed surface A – in the case of coherent waves is not 
generally valid, since depending on the characteristics of the configuration, a mean power- and 
energy difference may also appear.  
This power- or energy difference may be positive or negative – which can be seen from the derived 
correlations – thus an energy excess or deficit may appear, but in special cases it can also have zero 
value. 
 
Let us determine the theoretical limits (extremities) for n pieces of coherent waves. 

Let’s assume that 0 01 02 0 0 01 02 0...   and  ...
n n

E E E E H H H H= = = = = = = =
� � � � � � � �

 

In this case for an extremity we can write: 0 0  ;  
r r

E nE H nH= =
� � � �

 

 ( )
( ) ( )

( )
0 0 2 0 0 0 0  ;  

2 2 2r in effeff
A

nE nH E H E H
S n P n dA

× × ×
= = = ∫

� � � � � �
� �

�  

 ( ) ( ) ( ) ( )2 0 0 0 0

2 2outr sr r ineff eff effeff
A A A

E H E H
P P S dA n dA n n dA n P

× ×
= = = = ⋅ =∫ ∫ ∫

� � � �
� � � �

� � �  

The other extreme for the minimum (n is an even number) will take place, if the field intensities 
have alternately + and – signs. It is understood then that: 

 0 0 0 0 0 0( . ...) 0  and  ( . ...) 0
r r

E E E E H H H H= − + − + = = − + − + =
� � � � � � � �

 

So for the case of n-pieces of coherent waves we can write for the effective value of resultant 
power, as well as for E=tPeff  energy that: 

 ( ) ( ) ( )0
outr sr inreff eff eff

P P n P≤ = ≤  (1.18) 

 0
out s in

n≤ = ≤E E E  (1.19)
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1/d. Summary conclusions 
 
If within a region of space bound by closed surface A there simultaneously exist electromagnetic 
waves, originating from multiple sources placed within this volume, further the total input power is 
radiated out, and the law of energy conservation is valid for each source separately, then: 
 
− If the frequencies of the input signals at the sources differ from each other, then in all cases 

(independently of the configuration and electrical parameters) the law of energy conservation is 
valid, namely the energy of the resultant radiation is identical with the input energy (that has 
been radiated). 

 
− However in the case when the frequencies at the sources are identical (coherent feeding), then a 

power difference and an energy difference will also appear – the value and sign of these will 
depend on the space characteristics and electrical characteristics – thus the law of energy 
conservation is not valid. Namely, in such cases the law of energy conservation can be satisfied 
only in special cases (e.g. in the case of two waves with perpendicular polarization). 

 
However, if the total input power is not radiated out and/or the law of energy conservation is not 
valid generally for each of the sources separately (e.g. in the case of aperture radiators, or as a 
consequence of the losses in antennas), that is if: 

 ( ) ( ) ( )out s k ink k k

A

P P S dA P= = ≠∫
� �

�  

then in the derived equations with (Pout)k=(Ps)k quantities we should understand and always 

substitute the values of related integrals. The correlations derived from the values of ∆P and ∆Peff 

remain valid. 
 
As the result of the analysis according to chapter 1 we can state that in the field of simultaneously 
present electromagnetic waves the law of energy conservation is not valid in the general sense, 
since it can be satisfied only in special cases.
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2. The scalar form of the power and energy of two coherent waves in far space 
 
After the calculations under chapter 1 having theoretical characteristics, let us now derive such 
correlations – for the simultaneous presence of two waves – which could provide numerical results 
in practical cases. 
 
In the following the powers and power densities will signify mean values in time (with the 
application of correlations suited for the elimination of time factor, in the case of waves with sine or 

cosine time functions). The notation E
�

 in this case signifies the value of the amplitude of electric 
field intensity, which also includes its phase. For the sake of simplicity in the first case let the 
polarization of the two waves be identical. 
 
At the points O1 and O2 of free space let there be two antennas, which should be fed at Pin1 and Pin2 
with identical frequencies, and let us examine their radiant characteristics in free space in  

r, θ, ϕ  spherical coordinates (fig. 2.) 

 

 

  
 Notations: 

 

λ wave length 
E amplitude of the electric field 

intensity 
S power density (per surface) 
G the gain of the antenna 
F  the normal radiant function 

φ phase angle 
G0 gain in main direction 
Z0 the wave resistance of free 

space 
n
�

 the normal vector of 
elementary surface dA 

β phase vector 

Geometric data: 
 according to the figure 

Fig. 2. 

 
As is known from the calculations related to antennas, we can write the following correlations with 

general validity: ( ) ( )
2

2 -
0 0 2

0

;   ;  ( ) ;   ;    ;  
2 4

j in
E P

G G F E E r F e E E S G
Z r

φθ ϕ θ ϕ
π

= = = = =
� �

 

since 0 120
E

Z
H

π= =  

 
Let us first write up the powers Pout=Ps  radiated into the far-space by the antennas, and the values 
of field intensities at point Q, in the case with non-simultaneous radiation. In such cases it is 
advisable to calculate the surface integrals for spherical surfaces (wave fronts) with radiuses  
r1 and r2. 
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 21
1 1 1 1 1 1 1 1 1 12

11 1

   sin
4

in
out s

A A

P
P P S dA G dA dA r d d

r
θ ϕ θ

π
= = = ← =∫ ∫� �  

After substitution and rearrangement for both values it can be written that: 

 

( )

( )

1

2

2
201

1 1 1 1 1 1 1 1

0 0

2
202

2 2 2 2 2 2 2 2

0 0

; sin
4

; sin
4

out s in in

out s in in

G
P P P F d d P

G
P P P F d d P

π π

ϕ θ

π π

ϕ θ

θ ϕ θ ϕ θ
π

θ ϕ θ ϕ θ
π

= =

= =

= = =

= = =

∫ ∫

∫ ∫

 (2.1) 

And for the electric field intensities we get: 

 
2 2 2

2 2 0 0
0 02 2 2

0

2
   60

2 4 4
in

in in

E P Z G F F
S G F E P P G

Z r r rπ π
= = → = =  

 1 21 2
1 1 01 1 01 2 2 02 2 02 1 1 2 2

1 2

60   ;  60   ;    ;  j j

in in

F F
E F E P G E F E P G E E e E E e

r r

φ φ− −= = = = = =
� �

 

The values of phases 
 ( ) ( )1 1 01 2 2 02  ;  r rφ β φ φ β φ= + = +  

can be written in this form: 

 

( ) ( ) ( )

( ) ( ) ( )

1 01

2 02

1 1 1 1
1 1 01 1 1 1 01

1 1

2 2 2 2
2 2 02 2 2 2 02

2 2

; ;
60   60

; ;
60   60

j r

in in

j r

in in

F F
E P G e E E P G

r r

F F
E P G e E E P G

r r

β φ

β φ

θ ϕ θ ϕ

θ ϕ θ ϕ

− +

− +

= → = =

= → = =

�

�
 (2.2) 

Let us now consider the case, when the antennas radiate simultaneously with identical polarization, 

λ wavelength, φ01 and φ02 starting phases. 

 

If under “far space” we mean also the criterion d� r, then according to fig. 3. we can introduce 

further simplifications. 

 

In case of r � d: α = θ1− θ2 ≅ 0 

 

θ1  ≅ θ  ≅ θ2  ;  r1 � r � r2 

 

∆r � r → 
1 2

1 1 1

r r r
≅ ≅  

 

r1 = (r− ∆r)  ;  r2 = (r  + ∆r) 

 

cos
2

d
r θ∆ =  

Fig. 3. 



 

17 
2. The scalar form of the power and energy of two coherent waves in far space  

János Vajda: VIOLATION OF THE LAW OF ENERGY CONSERVATION IN WAVE FIELDS 

With these simplifications we can arrive to the following correlations: 

 

( )

( )

2
201

1 1 1 1 1

0 0

2
202

2 2 2 2 2

0 0

; sin
4

; sin
4

out s in in

out s in in

G
P P P F d d P

G
P P P F d d P

π π

ϕ θ

π π

ϕ θ

θ ϕ θ ϕ θ
π

θ ϕ θ ϕ θ
π

= =

= =

= = =

= = =

∫ ∫

∫ ∫

 (2.3) 

The values of phases are: 

 1 01 2 02( )   ;  ( )   ;  cos
2

d
r r r r rφ β φ φ β φ θ= − ∆ + = + ∆ + ∆ =  (2.4) 

And the electric field intensities are (since; r1 ≅ r2 ≅ r ): 

 

1

2

1 1
1 1 01 1 1 1 01

2 2
2 2 02 2 2 2 02

( ; ) ( ; )
60    60

( ; ) ( ; )
60    60

j

in in

j

in in

F F
E P G e E E P G

r r

F F
E P G e E E P G

r r

φ

φ

θ ϕ θ ϕ

θ ϕ θ ϕ

−

−

= → = =

= → = =

� �

� �
 (2.5) 

For the resultant electric field intensity at distant point Q we can write that: 

 1 2
1 2 1 2   ;  j j

r r r
E E E E e E e E E

φ φ− −= + = + =
� � � �

 

 ( ) ( )1 1 2 2 1 1 2 2cos cos sin sinrE E E j E Eφ φ φ φ= + − +
�

 

 ( ) ( )
2 2 22

1 1 2 2 1 1 2 2cos cos sin sin
r r

E E E E E Eφ φ φ φ= = + + +
�

 

After squaring and rearrangement we get: 
 ( )2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 22 cos cos sin sin 2 cos( )rE E E E E E E E Eφ φ φ φ φ φ= + + + = + + −  

Using the expressions: 
 ( )1 2 01 02 01 02 2r r r r rφ φ φ β β φ β β φ φ φ β∆ = − = − ∆ + − − ∆ − = − − ∆  (2.6) 

We get: 
 2 2 2

1 2 1 22 cos
r

E E E E E φ= + + ∆  

and with this, the resultant power density Sr is: 

 
2 2 2

1 2 1 2 1 2
1 2 1 2

0 0 0 0 0

cos cos
2 2 2

r
r

E E E E E E E
S S S S S S

Z Z Z Z Z
φ φ= = + + ∆ = + + ∆ = + + ∆  

For the resultant power output of the radiation now we can write that: 

 1 2
1 2

0

cos
outr sr r

A A A A

E E
P P S dA S dA S dA dA

Z
φ= = = + + ∆∫ ∫ ∫ ∫� � � �  

As it is evident from correlations 1.1 and 1.2 (when the law of energy conservation is valid for the 
single sources of radiation, and the total input power is radiated out): 

 1 1 2 2  ;  
in in

A A

P S dA P S dA= =∫ ∫� �  

further  
A

P SdA∆ = ∆∫�   where  1 2

0

cos
E E

S
Z

φ∆ = ∆  

 1 2 1 2 1 2
0

1
cos

outr sr in in in in

A

P P P P E E dA P P P
Z

φ= = + + ∆ = + + ∆∫�  (2.7) 

Thus the mean power difference is: 

 2
1 2

0

1
cos    sin

A

P E E dA dA r d d
Z

φ θ ϕ θ∆ = ∆ ← =∫�  
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Substituting the E1 and E2 values given by 2.5, further Z0=120π and cos
2

d
r θ∆ =  values we get: 

 
( ) ( )

( )

2
01 02

1 2 1 2

0 0

01 02

; ; cos sin
2

where: = 2 cos

in in

G G
P P P F F d d

d

π π

ϕ θ

θ ϕ θ ϕ φ θ ϕ θ
π

φ φ φ π θ
λ

= =

∆ = ∆

∆ − −

∫ ∫
 (2.8) 

According to our aim, with equation 2.8 we have arrived at a correlation, which contains only scalar 
quantities, thus by its computerized evaluation we can get numerical values for the mean power-
difference (or by multiplying with time, the energy-difference) produced in far space, as the 
resultant of the electromagnetic waves with identical wavelengths and polarization radiated from 
two antennas. 
 
It is worthwhile to give the value of ∆P for the case, when the two antennas are identical and 
oriented into the same direction, that is when: 

 

( ) ( ) ( )

( )

( )

1 2 01 02 0

2
20

1 2

0 0

01 02

; ; ;    and   

; cos sin
2

2 cos

in in

F F F G G G

G
P P P F d d

d

π π

ϕ θ

θ ϕ θ ϕ θ ϕ

θ ϕ φ θ ϕ θ
π

φ φ φ π θ
λ

= =

= = = =

∆ = ∆

∆ = − −

∫ ∫  (2.9) 

With the help of the correlation given in 2.9 we can calculate the limits (extremities) of the value of 
∆P for the case of two waves. 

When     1 2    and   0
2
in

out out

P
P P d= = → : 

 
2

20
01 02

0

cos( ) ( ; )sin
4ext in

G
P P F d d

π

ϕ

φ φ θ ϕ θ ϕ θ
π

=

∆ = − ∫  

But as follows from 2.3: 

 
2

20
01 02

0 0

( ; ) sin 1   thus   cos( )
4 ext in

G
F d d P P

π π

ϕ θ

θ ϕ θ ϕ θ φ φ
π

= =

= ∆ = −∫ ∫  

If the two antennas are fed with identical phases φ01 = φ02, then max( )
ext in

P P∆ = ; but with counter-

phase min( )
ext in

P P∆ = − . 

Thus in the case of two antennas we can write in perfect consonance with the correlations 1.18 and 
1.19 (here n=2) that: 
 0 ( ) 2

in in outr sr in in in in
P P P P P P P P P− = ≤ = = + ∆ ≤ + =  (2.10) 

Finally let us determine the power- and energy correlations with general validity for the case of two 
waves, if the polarization of the two waves are not identical, that is when the planes of polarization 
enclose angle γ  (fig. 4.) 

 

1

2

1 1

2 2

j

j

E E e

E E e

φ

φ

−

−

=

=

�

�  

Fig. 4. 
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In such case, for the resultant field intensity it can be written that: 

 

[ ] [ ]

1 2 2

2 2 22
1 2 2

2 22
1 2 2

2 22 2 2
1 1 2 2 1 1 2 2 2

cos sin

cos sin

cos cos cos sin cos sin sin

r r

j j j

r

r

E E E E E

E E e E e E e

E E E E E E

φ φ φ

γ γ

γ γ

φ γ φ φ γ φ γ

− − −

= = + +

= + +

= + + + +

� � �

 

After squaring, rearranging, and applying the related trigonometric correlations, we arrive at the 
following result: 
 2 2 2 2 2

1 2 1 2 1 2 1 2 1 22 cos cos( ) 2 cos cos
r

E E E E E E E E Eγ φ φ γ φ= + + − = + + ∆  

In analogous manner with the demonstration of 2.6 and 2.7 correlations, the following end result is 
derived: 

 

1 2 1 2 1 2
0

2
01 02

1 2 1 2

0 0

01 02

cos
cos

cos ( ; ) ( ; ) cos sin
2

where:  ( ) 2 cos

outr sr in in in in

A

in in

P P P P E E dA P P P
Z

G G
P P P F F d d

d

π π

ϕ θ

γ
φ

γ θ ϕ θ ϕ φ θ ϕ θ
π

φ φ φ π θ
λ

= =

= = + + ∆ = + + ∆

∆ = ∆

∆ = − −

∫

∫ ∫

�

 (2.11) 

It can be seen that with identical polarization γ = 0° the P∆  is maximal, and with perpendicular 

polarization γ = 90° →∆P = 0. 
 
The correlations derived above are valid for the case, when the law of energy conservation is valid 
for the two single sources separately and the total input powers are radiated out, that is when  
Pout1= Ps1= Pin1 and Pout2= Ps2= Pin2. 
 
If the law of energy conservation is not valid for each single source separately in general sense 
and/or the input powers are not radiated out (e.g. with aperture radiating sources, or because of the 
losses in the antennas), that is when Pout1= Ps1≠ Pin1 and Pout2= Ps2 ≠ Pin2 then instead of the 
expressions 2.11 we should use and understand the following correlations, which have general 
validity: 

 

1 2

2 2
2 201 02

1 1 1 2 2 2

0 0 0 0

( ; ) sin   ;  ( ; ) sin
4 4

outr sr out out

out in out in

P P P P P

G G
P P F d d P P F d d

π π π π

ϕ θ ϕ θ

θ ϕ θ ϕ θ θ ϕ θ ϕ θ
π π

= = = =

= = + + ∆

= =∫ ∫ ∫ ∫
 

 
2

01 02
1 2 1 2

0 0

cos ( ; ) ( ; )cos sin
2in in

G G
P P P F F d d

π π

ϕ θ

γ θ ϕ θ ϕ φ θ ϕ θ
π

= =

∆ = ∆∫ ∫  (2.12) 

 ( )01 02 2 cos
d

φ φ φ π θ
λ

∆ = − −
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3. The general calculation of the power and energy of coherent waves with scalar 

quantities 
 
In the case of more than two simultaneous radiations according to the preceding, knowing the 
parameters of the single radiating sources, we should determine the resultant field intensity Er, and 
having this, we calculate the following generally valid integral:  

 
22

2 2

0 0 0 0

1
sin

2 2
r

outr sr r

A

E
P P dA E r d d

Z Z

π π

ϕ θ

θ ϕ θ
= =

= = =∫ ∫ ∫�  (3.1) 

For the calculations performed with scalar quantities it is justified to mention that for the solution of 

problems according to our purpose, in the case of d� r the following formula (derived from 3.1) 

also has general validity, whether the question is about the resultant of radiation originating from 
only one single source, or from several sources.

 
2 2

20

0 0 0 0

1
( ; )sin ( ; )sin

4 4
r

outr sr in r in r

G
P P P F d d P G d d

π π π π

ϕ θ ϕ θ

θ ϕ θ ϕ θ θ ϕ θ ϕ θ
π π

= = = =

= = =∫ ∫ ∫ ∫  

 
2

20

0 0

( ; )sin
4

outr sr r
r

in in

P P G
F d d

P P

π π

ϕ θ

ξ θ ϕ θ ϕ θ
π

= =

= = = ∫ ∫  (3.2) 

From this we can already see, that when ξ=1, then the law of energy conservation is valid, but if 
ξ≠1 then it is not valid. 
 
The correlation given with 3.2 is valid not only for the radiation in far space, but also for the quasi 
far space, if G0r and Fr(θ;ϕ ) are related to that. 
 
Sometimes it happens in the practice that we want to determine the value of ξ only for a partial 
surface; in that case with the correlation 3.2 the integration boundaries should be selected according 
to the desired surface. 
 
Summarizing: the correlations derived in the previous- (2.) and this chapter describe the power- and 
energy conditions – with scalar quantities in a form suitable for numerical evaluation – in cases with 

coherent systems (with identical λ) when d� r, which is in perfect harmony with the results 

obtained in the first chapter and with the conclusions derived from them. Therefore their repetition 
is unnecessary.  
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4. The Maxwell equations and the violation of the law of energy conservation in 

the case of electromagnetic waves 
 
Regarding the violation of the law of energy conservation, the results and conclusions obtained in 
previous chapters by all means justify the examination whether they are in consonance with 
Maxwell’s equations. If we get the same results from the Maxwell equations, then we can be sure 
that the law of energy conservation has no general validity, thus it can not be accepted as a 
postulate. 
 
For the examinations let us write up the Maxwell equations in one of its usual forms as a reminder. 

 

2 2

I. rot

II. rot

III. div 0

IV. div

V.   ;    ;  ( )

1 1
VI.

2 2

e

D
H i

t

B
E

t

B

D

D E B H i E E

w E H

ρ

ε µ σ

ε µ

∂
= +

∂

∂
= −

∂

=

=

= = = +

= +

�
� �

�
�

�

�

� � � � � ��

� �

 (4.1) 

 
Usually we include the Lorentz law about the force acting upon a charge that moves in 
electromagnetic field and the equations expressing the conservation of charge; but in the present 

case they will be unnecessary. The notations used in the equations: E
�

 electric-, H
�

 magnetic-, 
e

E
�

 

extraneous field intensity vectors, D
�

 displacement-, B
�

 magnetic induction vectors, ρ the electric 
charge density, σ specific conductivity, i

�
 current density vector, ε dielectric constant, µ magnetic 

permeability, w energy density. The ε and µ are the material constants of the space. These quantities 
are the functions of the coordinate of place and time (four-dimensional space), thus they signify the 
momentary values present at the different points in the geometrical space. (The σ, ε, µ material 
constants are generally constant quantities). The equations according to 4.1 represent such a system, 
by which the characteristics of an electromagnetic field can be calculated at any later moment in 
time, when given the starting conditions. We will deal with the many facets of these equations with 
the analysis of their content, and with the variations of its solutions satisfying the given conditions 
only in connection with the present examination. Thus we will work mainly with the equation VI. 
describing the energy density of the space, naturally taking into account also the rest of the 
equations. 
 
As first, in the next section we will examine the determination and interpretation of the radiant 
power of the electromagnetic wave. 
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4/a. The Poynting vector and the radiant power 
 

Let the electromagnetic field be known according to the vector functions E
�

 and H
�

, which are 

originating from the source of radiation (e.g. antenna) as the result of quantities i
�

 and 
e

E
�

. Let’s 

determine how much radiant power Ps  is departing from the volume V bound by the surface A, 
which includes the source. 
 

As is known, with the Poynting vector ( )S E H= ×
� � �

and the Gauss theorem we can write: 

 ( ) ( )div
s

A V

P E H dA E H dV= × = ×∫ ∫
�� � � �

�  

Let’s write up the value of div( )E H×
� �

 taking into consideration the Maxwell equations: 

 div( ) rot rotE H E H H E× = − +
� � � � � �

 
Substituting the I., II. and V. Maxwell equations we get: 

 div( )
D B E H

E H E i H E H Ei
t t t t

ε µ
   ∂ ∂ ∂ ∂

× = − + − = − + −   
∂ ∂ ∂ ∂   

� � � �
� � � � � � �� �

 

Since 
e

i
E E

σ
= −

�
� �

  further  21

2

E
E E

t t
ε ε

∂ ∂
=

∂ ∂

�
� �

  and  21

2

H
H H

t t
µ µ

∂ ∂
=

∂ ∂

�
� �

 

We get: 

 
2 2

2 21 1
div( )

2 2 e e

i w i
E H E H E i E i

t t
ε µ

σ σ

∂ ∂ 
× = − + − + = − − + 

∂ ∂ 

� �
� � � � � �� �

 (4.2) 

Where w is the energy density per unit volume according to equation VI. 
 
Let’s recognize that the equation 4.2 signifies an identity, thus we can calculate the wanted 

radiant power Ps in two ways by knowing the vectors E
�

 and H
�

: 

 ( ) ( )div
s

A V

P E H dA E H dV= × = ×∫ ∫
�� � � �

�  

or in possession of the quantities of E
�

, H
�

, i
�

,
e

E
�

: 

 
2 2

2 21 1

2 2s e e

V V V V V V

i w i
P E H dV dV E idV dV dV E idV

t t
ε µ

σ σ

∂ ∂ 
= − + − + = − − + 

∂ ∂ 
∫ ∫ ∫ ∫ ∫ ∫

� �
� � � �� �

 

This can be demonstrated with the following equation: 

 
2

( )
s e

A V V V

w i
E H dA P dV dV E idV

t σ

∂
× = = − − +

∂∫ ∫ ∫ ∫
�

�� � � �

�  (4.3) 

Thus we can choose freely whether to calculate the radiant power from 4.3 with the 

expressions standing on its left side or right side. 

 
We can write the derived result in differential form as well, if ps represents the radiant power 
density per unit volume, then: 

 ( ) ( )div
s s

V A V

p dV P E H dA E H dV= = × = ×∫ ∫ ∫
�� � � �

�  

 ( )
2

2 21 1
div

2 2s e

i
E H p E H E i

t
ε µ

σ

∂  
× = = − + − + 

∂  

�
� � � � � �

 (4.4) 

As we know, in the equation VI. given by 4.1 the first part represents the power density per unit 
volume wE  of the electric force field, and the second part wH that of the magnetic force field; thus 
the equations 4.4 can be interpreted in the following way in the case of electromagnetic waves.  
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According to the right side of the equation the radiant power density per unit volume ps is 

originating from the 
e

E i⋅
� �

 input power density, and from the rate of decreasing the wE  and wH 

(electric and magnetic) power densities in time (as they are transformed into radiation); after 

subtracting the 
2

i
σ

�
 power density corresponding with the Joule-heat.  

According to the left side of the equation we can also calculate the same ps radiant power density 

also by forming the divergence of the Poynting vector ( )S E H= ×
� � �

. 
 
The examinations as per our aims relate to the electromagnetic waves, but still it is of use to touch 
upon the following points. As we know, the Maxwell equations have general validity, thus they 
apply not only to the fast changing, but also to the slow changing and static electromagnetic fields. 
So we can ask the question, what is the meaning of the equations according to 4.4 in the case of 

electrostatic fields, when E
�

 and H
�

are constant values in time? In such cases the right side of the 

equation will reduce to 
2

e

i
E i

σ

 
− + 
 

�
� �

 since the electric and magnetic power densities wE and wH are 

constant values in time, thus their time derivatives are zero. We know from practice that in static 

fields there is no radiation, thus ps=0. From this follows that in this case 
2

e
iE i σ=
�� �

, namely the 

input power will dissipate into Joule-heat. That is right, but what is happening in this case with the 

left side of the 4.4 equation, since the div( )E H×
� �

 seemingly appears to be unchanged. This is really 
only an appearance, since with static fields the related Maxwell equations are the followings. 

0
D

t

∂
=

∂

�

 and 0
B

t

∂
=

∂

�

 thus: 

 rot   ;  rot 0  ;  
e

i
H i E E E

σ
= = = −

�
� � � ��

 

with these it can be written that: 

 

( )

( )
2

div rot rot 0

div 0
e e s

E H E H H E Ei H Ei

i i
E H E i E i p

σ σ

× = − + = − + ⋅ = −

 
× = − − = − + = = 

 

� � � � � � � � �� �

� �
� � � �� �  

So we get here also that:
2

e

i
E i

σ
=

�
� �

 

 
Then we can see that we have arrived at the former result, thus for the two sides of the equation the 
identity stands here too. We can conclude that with static fields (in consonance with the practice) 
there is no radiation, but there is radiation in the electromagnetic fields changing in time (whether 
slowly or rapidly), and the power density of the radiation per unit volume is calculated with 
equation 4.4, or the total momentary power Ps with the correlation 4.3. 
 
Returning to the electromagnetic waves it is suitable to mention the following. 
 
When the waves are propagating in free space, then in place of material constants ε and µ, the 
dielectric and magnetic permeability of the vacuum ε0=8.859 10

-12 
As/Vm and µ0=4π 10

-7
 Vs/Am 

will be used. Further, as is known, in such case for the absolute value of the field intensities we get 

0E Z H=
� �

  where 0
0

0

120Z
µ

π
ε

= =  is the wave resistance of the free space.  
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Taking into account further that 
22 2E EE E E= = =

� � � �
 and 

22 2H HH H H= = =
� � � �

 and 
22 2i ii i i= = =

� �� �
, then with energy density w we get that the electric wE and magnetic wH power 

densities are equal in value: 

 2 2 2 2 20
0 0 0 0 0

0

1 1 1 1

2 2 2 2E H
w E Z H H H w

µ
ε ε ε µ

ε
= = = = =  

So in this case: 
 ( ) 2 2

0 0 02 2E H E Hw w w w w E Hε µ= + = = = =  (4.5) 

In case of free space the formulas 4.3 and 4.4 will get the following form: 

 ( )
2

0
s e

A V V V

w i
E H dA P dV dV E idV

t σ

∂
× = = − − +

∂∫ ∫ ∫ ∫
�� � � �

�  (4.6) 

 ( )
2

0div
s e

w i
E H p E i

t σ

∂
× = = − − +

∂

� � � �
 (4.7) 

Where according to 4.5: 
2 2

0
0 0 0 02 2

w E H E H
E H

t t t t t
ε µ ε µ

∂ ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂
 

 
As a reminder, it is justified to mention that the previously determined Ps and ps quantities are 
momentary values. In the practice however, usually the knowledge of their time mean value – that 
is, their effective value – is necessary. The effective (mean) values for waves with time functions of 
sine or cosine can be derived by the calculation of the mean integral taken for the time period τ, so: 

 ( ) ( )
0 0

1 1
  ;  

s s s seff eff

t t

P P dt p p dt

τ τ

τ τ
= =

= =∫ ∫  

We have seen such calculations in chapter 1, now we will not deal with this here in detail (to avoid 
repetition). Knowing the effective power and power density obtained this way, we can derive the 
values of energies by integrating them further by time. If the amplitudes of the waves with time 
functions of sine and cosine are not modulated, then instead of integrating by time, the value of the 
energy can be obtained by the multiplication of the effective power with time. 
 
In the next chapter we will examine the case, when there are two waves (radiation) in the space of 
radiation simultaneously using the Maxwell equations.
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4/b. The Maxwell equations for the simultaneous presence of two waves 
 
Let be given two radiating sources (1st and 2nd antenna in the following) within the volume V  bound 

by surface A with 1i
�

 and 2i
�

 current densities, 1e
E
�

 and 2e
E
�

extraneous (external) field intensities 

associated to them separately (according to the indexes). In this case the vectors 1i
�

 and 1e
E
�

 of the 1st 

antenna will create 1E
�

 and 1H
�

 field intensities within the space of radiation, while the 2i
�

 and 2e
E
�

 at 

the 2nd antenna create the 2E
�

 and 2H
�

 quantities (waves). 

 
If the two antennas radiate simultaneously, then the waves are also present in the field of radiation 
at the same time, which will create the phenomena of interference as the result of their 
superposition. We can state that the Maxwell equations are valid also for the resultant fields 
generated by the superposition of different fields, since: 

 ( ) 1 2 1 2
1 2 1 2 1 2 1 2rot rot rot

D D D D
H H H H i i i i

t t t t

   ∂ ∂ ∂ ∂
+ = + = + + + = + + +   

∂ ∂ ∂ ∂   

� � � �
� � � � � � � �

 

where:    ( ) ( ) ( )1 2 1 2 1 2  ;    ;  r
r r

D
H H H i i i D D

t t

∂ ∂
= + = + = +

∂ ∂

�
� � � � �� � �

 

Thus we get: 

 rot r
r r

D
H i

t

∂
= +

∂

�
� �

 

Similarly: 

 ( ) ( )1 2 1 2rot   ;    ;  r
r r r

B
E E E E B B B

t

∂
= − = + = +

∂

�
� � � � � � �

 

In the same way we get: 

 
( ) ( )
( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2 1 2

div div div div 0  ;  

div div div div   ;  D   ;  

r r

r r r r

B B B B B B B B

D D D D D D Dρ ρ ρ ρ

+ = + = = = +

+ = + = = = + = +

� � � � � � � �

� � � � � � � �  

The H
�

, E
�

, ρ , B
�

, D
�

, i
�

 are the quantities known from earlier, and the index r signifies the resultant 
of these quantities. 
 
After all these, for the case of two simultaneous radiations (in this case it is sufficient to deal only 
with the correlation 4.4) we can write that: 

 
( )

( )

2
2 2 1

1 1 1 1 1 1 1

2
2 2 2

2 2 2 2 2 2 2

1 1
div

2 2

1 1
div

2 2

s e

s e

i
E H p E H E i

t

i
E H p E H E i

t

ε µ
σ

ε µ
σ

∂  
× = = − + − + 

∂  

∂  
× = = − + − + 

∂  

�
� � � � � �

�
� � � � � �

 

 
2

2 21 1
div

2 2
r

r sr r r er r

i
E p E H E i

t
ε µ

σ

∂  
= = − + − + 

∂  

�
� � � � �

 (4.8) 

By substituting the followings into the correlation 4.8 and developing it we get: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )( )

1 2 1 2 1 2 1 2

2
2 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

  ;    ;    ;  

1 1
div

2 2

r r r er e e

sr e e

H H H E E E i i i E E E

i i
E E H H p E E H H E E i i

t
ε µ

σ

= + = + = + = +

+∂   + × + = = − + + + − + + +   ∂  

� � � � � � � � �� � �

� �
� � � � � � � � � � � �
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 2 1 2 1 1 2 2 1 2 2 1

1 1 2 2 1 2 2 1

2
2 2 2 2

1 2 1 2 1 2 1 2

div div

div div div

2 0

E E H H E H E H E H E H

E H E H E H E H

i i i i i i i i

σ σ σ σ σ σ

   + × + = × + × + × + × =   

 = × + × + × + × 

+
= + + = + +

� � � � � � � � � � � �

� � � � � � � �

� � � � �� � �

 

Namely 1i
�

2i
�

 is zero, because each of the current densities are different from zero only in its own 

antenna, thus where one is existing the other one is zero and vice versa, therefore we get 1i
�

2i
�

=0 

 ( )( )1 2 1 2 1 1 2 2 1 2 2 1 1 1 2 2 0 0
e e e e e e e e

E E i i E i E i E i E i E i E i+ + = + + + = + + +
� � � � � � � �� � � � � � � �

 

Owing to similar reasons: 1 2 2 10  ;  0
e e

E i E i= =
� �� �

 

 ( ) ( )
2 2

2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 22   ;  2E E E E E E H H H H H H+ = + + + = + +
� � � � � � � � � � � �

 

Now for the correlation 4.8 we can write that: 

 
( ) ( ) ( ) ( )1 2 2 2 1 2 2 1

2 2
2 2 2 2 1 2
1 1 2 2 1 2 1 2 1 1 2 2

div div div

1 1 1 1

2 2 2 2

sr

e e

E H E H E H E H p

i i
E H E H E E H H E i E i

t t t
ε µ ε µ ε µ

σ σ

 × + × + × + × = = 

∂ ∂ ∂     = − + − + − + − − + +     ∂ ∂ ∂   

� � � � � � � �

� �
� � � � � � � � � �� �  

Importing the notations ps1 and ps2 : 

 ( ) ( )1 2 1 2 2 1 1 2 1 2 1 2div
s s sr s s

p p E H E H p p p E E H H
t

ε µ
∂   + + × + × = = + − +   ∂

� � � � � � � �
 (4.9) 

We can see that psr= ps1 + ps2 + ∆ps, where 

 ( ) ( )1 2 2 1 1 2 1 2div
s

E H E H p E E H H
t

ε µ
∂   × + × = ∆ = − +   ∂

� � � � � � � �
 (4.10) 

Thus with momentary power densities ps1 and ps2 each represented by one of the two waves, 
following from the interference of two waves, one more ∆ps additional power density difference 
appears in the resultant power density. This ∆ps quantity can be calculated according to correlation 
4.10 also in two ways (either using the expression on the left side, or that on the right side of the 
equation). 
 
Let us write up further the total momentary resultant power Psr of the space in the case of two 
simultaneous waves, based on the equations 4.9 and 4.10: 

 1 2 1 2s s s sr s s s

V V V

p dV p dV p dV P P P P+ + ∆ = = + + ∆∫ ∫ ∫  

Where ∆Ps is the momentary power difference: 

( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1 1 2 1 2div s

V A V

E H E H dV E H E H dA P E E H H dV
t

ε µ
∂   × + × = × + × = ∆ = − +    ∂∫ ∫ ∫

�� � � � � � � � � � � �

�  

or with the notation ( ) ( )1 2 2 1S E H E H∆ = × + ×
� � � � �

 

 ( )1 2 1 2div s

V A V

SdV SdA P E E H H dV
t

ε µ
∂

∆ = ∆ = ∆ = − +
∂∫ ∫ ∫

� � � � � � �

�  (4.11) 

For the effective value (time mean value) of the power difference we can write that: 

 ( ) ( )1 2 1 2

0 0 0

1 1 1
div

s eff

t V t A t V

SdVdt SdAdt P E E H H dVdt
t

τ τ τ

ε µ
τ τ τ

= = =

∂
∆ = ∆ = ∆ = − +

∂∫ ∫ ∫ ∫ ∫ ∫
� � � � � � �

�  (4.12) 

As we know, for the correlations derived for free space, instead of ε we can write ε0, and instead of 

µ similarly µ0, taking also into consideration that 0E Z H=
� �

. 
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For the sake of completeness it is enough to mention that we can get the energies corresponding to 
the powers after integrating them by time, or in the case of waves without amplitude modulation, 
simply by multiplying with time. 
 
Summarizing the results obtained in this chapter we can state that the possibility of the violation of 
energy conservation instead of contradicting the Maxwell equations, directly follows therefrom. 
Thus we can consider it to be a proven fact, that the law of energy conservation can not be accepted 
as a postulate, since under certain conditions (which have been already analyzed in details in 
chapters 1, 2, and 3) a power- and energy difference can appear, that depending on circumstances 
can be zero, excess, or deficit as well. 
 
From the derived results it also appears that this power- or energy difference in the free space 
originates exclusively from the interference of the waves. The losses (joule-heat) of the sources 
influence the magnitude of these quantities only indirectly, namely so that the wave generating 
ability of the input powers will decrease according to the losses. The same can also be said for the 
case when the parameters of the space ε and µ are not lossless. 
 
It can be mentioned in advance that the law of energy conservation can be violated not only with the 
interference of two or more waves, but even in the case of one single source, in spite of the fact that 
Joule heat does not appears and the free space is also lossless. We will see such a case later e.g. 
with aperture radiators. 
 
It is the characteristic of the many sidedness and wealth of meaning of the Maxwell equations that 
even such (at first sight) unbelievable results follow from them, which are valid not only for the 
spherical waves, as the consequence of the general validity of the equations. 
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4/c. The general form of Maxwell equations in the case of multiple sources and 

waves 
 
The examinations completed so far, and the field theory concerning vectors provide a ground for 
writing up the Maxwell equations in their general form, applicable also for several sources and 
waves as follows. The index (r,n) utilized by the expressions signify the resultant of the 
simultaneously existing n-pieces of physical quantities. The σ, ε, µ material constants can be 
considered as quantities independent from n. 

 

( )

( )

,
, ,

,
,

,

, ,

, , , , , , ,

2
,2 2

, , , , ,

I. rot

II. rot

III. div 0

IV. div

V.   ;    ;  

1 1
VI. div

2 2

r n

r n r n

r n

r n

r n

r n r n

r n r n r n r n r n r n re n

r n

r n r n s n r n r n

D
H i

t

B
E

t

B

D

D E B H i E E

i
E H p E H

t

ρ

ε µ σ

ε µ
σ

 ∂
= +  ∂ 

∂
= −

∂

=

=

= = = +

∂  
× = = − + − + 

∂  

�
� �

�
�

�

�

� � � � � ��

�
� � � �

, ,

, , , , , r,n
1 1 1 1 1
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For the sake of completeness let us write up the equations expressing the conservation of charge, 

and also the law about the force ,r nF
�

 acting upon the charge q, moving in electromagnetic field with 

speed v
�

 (Lorentz-law). 
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 (4.14) 

This generally valid form of Maxwell equations according to the examinations and verifications 
completed so far prove the possibility, that with the forming of favorable structures of 
electromagnetic waves, and the arrangement of the field structures into appropriate structures, it is 
possible to create excess power and excess energy above the powers and energies fed into the 
system. This fact proves at the same time that the law of energy conservation has no general 
validity. 
As the finalization of the related theoretical examinations referring back to the correlations 1.18 and 
1.19, the general form of the law of energy conservation for n-pieces of sources will take the 
following shape, where E signifies the energy: 
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 (4.15) 

Further the efficiency of radiation (energy factor) ξn for n sources is: 
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5. The general discussion of straight antennas with scalar quantities 
 
In the previous chapters according to our aim settings we have dealt mainly with theoretical 
calculations and provings. In the followings we will deal with the practical meanings of the results 
originating from these examinations in quantitative form. 
We already have the generally valid formula 3.2 and the correlation 2.12 (for the case of two 
waves) for the quantitative representation of the power- and energy conditions in far space using 
scalar quantities. With the computerized evaluation of these correlations (since in the great majority 
of practical cases these evaluations are not possible in explicit form) for different antenna 
configurations (radiation sources) usually we can obtain numerical results. The radiant 
characteristics of the antennas in the literature are known almost exclusively only for the far space, 
but in certain cases it might be necessary also to know the results for the quasi far space. Therefore 
it seems to be useful to examine in this chapter the radiant characteristics of straight antennas 
(appearing often in practice) with scalar quantities, valid also for quasi far space. The arrangement 
necessary for the examinations is shown in fig. 5. where the meanings of the letters used for the 
notation of quantities can be interpreted according to the figure, or identical with the notations used 
so far. The calculations relate to the ideal case, assuming that the straight antenna of length l and its 
surrounding free space is lossless. 
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I(z) = the amplitude of the 
current along “l” (given 
scalar function) 

Fig. 5. 

 
The electric quantities are changing according to sine or cosine time functions, but the notations 
signify only the amplitudes depending on the space coordinates. Therefore the dependence on time 
and ϕ are not marked with these, since we are dealing with a rotationally symmetrical case. The 
effect of the dependence on time will be taken into account at the appropriate places (when 
determining the effective values). 
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Our task is to determine the absolute values of the resultant amplitudes perpendicular to the E(θ;r) 
and H(θ;r) appearing at the point at space coordinates r,θ as the effect of the current determined by 
I(z) amplitude function, for the antenna of length l fed with (Pin)eff  power. Then knowing these, we 
should determine the effective value of the Poynting vector’s absolute value corresponding to this 
case. Further the total effective power radiated through the closed surface A (including the setup) as 
the function of r distance. The related literature determines these quantities (as already mentioned) 

usually only for the far space, when they assume the l � r approximation, that is when they assume 

that 
z

r r
� �
� . Let us attempt to determine the wanted quantities without these approximations, taking 

into the account the δ angle. 
It is known from the solution of Maxwell equations for the (I(z)dz) elementary current (Hertz 
dipole) that: 

 ( ) ( ) ( ) ( )
0

60
; sin    ; ; zj r

z z z z z z z
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dE r I z dz dE r dE r e
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βπ
θ θ θ θ
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In our case the value of the differential electric field intensity perpendicular to the r
�

, by the 
application of the above is: 
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 (5.1) 

For the 5.1 we have to determine the sin cos
z z

r θ δ  quantities as the functions of r and θ. 

With the notations of fig. 5. for the values of rz and sinθz we can write that: 
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We get the value of cosδ according to the fig. 6. 
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Fig. 6. 

 
By substituting these into 5.1 and integrating by z for the whole length l of the antenna we get: 
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 (5.3) 

where: ( )
1

2 2 22 cos
z

r r zr zθ= − +  

We can see in equation 5.3 that in this case of r� z, rz ≅ r and r-z cosθ ≅ r, thus we get the 

expression of the straight antennas valid for the far space. 
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By describing the exponential factor in equation 5.3 with the Euler correlation we get two integrals 
denoted as: 
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 (5.4) 

With these we can write that: 
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With the equation 5.5 (by substituting the values rz, I1, I2) we can calculate the absolute values of 
the electric field intensity E(θ;r) in question, as the function of coordinates (θ;r). Naturally the 
calculation can not be done in explicit form, but it can be completed without difficulty with 
computer. 
 
Knowing the E(θ;r) it is simple to get the absolute value of the magnetic field intensity. 
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The absolute value of the Poynting vector’s effective value belonging to the (θ;r) coordinates is: 
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By having the Seff(θ;r) we can calculate the total radiant power Ps,eff(r), radiated through the 
spherical surface A with radius r as follows: 
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Since the straight antenna is a circle radiator in ϕ, thus: 
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We can realize that the derived results are applicable not only for one single antenna with length l, 
but also can be adapted for the case of several straight antennas (placed above each other on a 
common axis), if we know the I(z) amplitude functions and the lengths of the antennas, when the 
limits of the integration will be as the lengths of the specific antennas according to the 
configuration. Naturally the above calculations can be done – besides straight antennas – also for 
other antennas, but due to their bulkiness we will not deal with them here. 
 
Returning to the results obtained for the straight antennas – as a finalization we can also write up 
the expression of the radiant efficiency (energy balance) ξ(r) related to the examined antenna as the 
function of distance r; the value of which is valid not only for the far space, but also for the quasi 
far space, for waves without amplitude modulation. 
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where E(θ;r) can be calculated with the correlations 5.3; 5.4; and 5.5. 
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6. The radiant efficiency of elemental antennas 
 
During the theoretical calculations and demonstrations we have met several times with the 
limitation as condition that the derived result is valid only if the law of energy conservation is valid 
for the source (or sources) of radiation, and if the total input power is radiated out. We have also 
shown how these results will be modified if this condition is not satisfied. Naturally, this does not 
mean that the violation of the law of energy conservation will take place at the sources of radiation 
due to skin losses and matching errors. Since the Joule heat losses and the matching losses can be 
taken into account intelligibly. In practice a case may arise where the antenna does not radiate the 
total input power that could be radiated. It is commonly understood that this may be due to heat loss 
or matching error. However, in certain cases the antenna will not radiate the total input power even 
though the matching is perfect and the radiator is constructed from superconductor material. We 
meet with such a case in aperture radiators. 
 
Regarding the later considerations it is expedient to examine some elementary antennas (radiating 
sources) from the point of view whether the law of energy conservation is valid for them or not, 
since the antennas in practice are made up (will be formed) by such elementary antennas. 
 
In the following we will examine the radiation efficiency of some elementary antennas of this kind, 
that is their energy balance apart from the above mentioned losses. With our knowledge so far we 
can do these examinations in the simplest way by applying the equation 3.2 (in the case of free 
space), where G(θ;ϕ) is the antenna gain and F(θ;ϕ) is the normalized radiant characteristic.
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6/a. The isotropic antenna 
 
Although the isotropic antenna does not exist in actual practice (it is a fictional construct), it is 
advisable to determine its energy balance, since it serves in many cases as a base of comparison. 
Based on fig. 7. we can write the followings: 
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Thus in the case of isotropic antenna the energy conservation is valid, since we have got ξ =1. 
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6/b. The Hertz dipole 
 
As we know, the Hertz dipole, also referred to as using elementary current (I dl) is one of the most 
important radiators of the practical and theoretical calculations, therefore the examination of its 
radiant energy correlations is justified, which can be done according to the fig. 8. 
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After integration we get: 
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Accordingly, the law of energy conservation is valid also for the case of Hertz dipole, since we have 
got ξ =1 here too. 
 
This result is important, because the Hertz dipole is an antenna which exists in reality, and the 
straight antennas of length l (or also other antennas) are built up from such radiators, corresponding 
to the elementary currents. 
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6/c. The elementary aperture 
 
The elementary aperture (with infinitesimal dimensions) is also one of the important determinative 
elements of the antenna theory and practice. Namely its radiant characteristics constitute the basis 
of the aperture analysis. Therefore it is also justified to examine the radiant- and energy correlations 
for this elementary radiator. These examinations can be done according to fig. 9. where the aperture 
with surface of infinitesimal size dA is placed into the starting point of the coordinate system, and 
the amplitude of the electric field intensity E0 is constant on its surface. 
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 Fig. 9. 

 
For the calculation of the radiant efficiency ξ or energy factor in question, first it is necessary to 
determine the function G of the gain of the elementary surface, together with the radiant 
characteristics F. 
 
As is known, for the gain we can generally write that: 
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Huygens-Kirchhoff method is: 
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Substituting these back into the expression for G we get: 
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It can be seen that neither G nor F depends on ϕ, thus: 
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Now we can calculate the value of ξ as follows.
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Where integral I is: 
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The values of each integral in order are: 
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So we can already write up the requested end result:  
 

 ( ) 0
1 2 32 2 2 2

0 0 0 0

2 1 4 4
2 2

3 3 3 3

dA dA G dA
I I I dA

π π
ξ π π

λ λ λ λ
= + + = = = =  

 

The result is surprising, since 
2
0

1
dA

λ
� , therefore ξ �1, thus in the case of the elementary aperture 

the law of energy conservation is significantly violated (a big loss takes place). Therefore the law of 
energy conservation loses its validity in the case of elementary apertures. As we will see later, this 
effect comes into play (unfavorably) even with the apertures of big sizes. 
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6/d. The half wave dipole 

 
Although the half wave dipole does not belong to the category of elementary antennas in the strict 
sense, since it is an important radiator type in the practice – as well as in theory – it is justified to 
examine its power- and energy correlations. The examination similar to the previous case can be 
completed in a simple way according to the fig. 10. 
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Fig. 10. 

For the value ξ in question we can write that: 
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The value of the integral I0 can be determined in the simplest way by computerized evaluation, and 
we get a value of I0 ≅ 0,6094. Thus the value of ξ in question is: 
 0 0 1,641 0,6094 1,000025 1G Iξ = = ⋅ = ≅  

On the basis of this end result we can declare that the law of energy conservation is valid for the 
half wave dipole. 
 
It can be mentioned in advance that for the full wave dipole of length λ0 fed at its middle (which – 
concerning energetics – is equivalent with two half wave dipoles placed directly above each other) 
the law of energy conservation is no longer valid. 
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7. The energy coefficients of performance calculated for several antenna 

configurations 
 
After the fairly extensive mathematical analysis, in this chapter we will show the dependence of the 
derived radiant efficiency ξ (energy coefficient) as the function of the geometrical data of the 
antenna configuration, for some simple practical antenna configurations in the form of diagrams. 
The diagrams represent the results of computerized calculations (with the utilization of the 
correlations derived in the theoretical section) related to lossless radiation sources and free space. 
 
The performed numerical calculations were done with the expressions valid for the far space of 
radiation, showing the related correlations and the parameters of the antenna configuration with 
each of the figures. The utilized antenna characteristics and the gain function valid for far space can 
be found in the cited literature, or they can be derived by the methods described there. The power 
connected to the input of the antennas originate from the same generator (their frequency is 
identical), thus the calculations are valid for coherent systems. 
 
It is unambiguously evident from the diagrams derived for the antenna configurations that the law 
of energy conservation, in certain cases how and in what measure will be violated, thus their 
detailed evaluation is unnecessary, so we will make only a few remarks and characteristic 
conclusions. 
 
The notations used in the diagrams according to the practice so far:  ξ - the energy coefficient, d - 
distance between the elements, x - the size expressed in wave lengths, n - the number of identical 
antennas, φ and ψ - the values of phase angles, P - the effective power, E0 - the electric field 
intensity, Es and Ein - signifies energy here, where the meaning of indexes are obvious. 
 
Naturally, the energy coefficient ξ can be determined also for the case of any type-, any number- 
and any configuration of antennas (using the described formulas), if the parameters of the single 
antennas and their geometric configurations are given. 
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Two pieces of isotropic radiators 
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Fig. 11. 

 
We can see from the above diagram to what measure- and with what sign the law of energy 
conservation is violated, depending on the phase conditions. The deviation from ξ =1 is diminishing 
with the increase of distance x and finally converges to the ξ =1 value, corresponding to the level of 
energy conservation. 
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Two pieces of Hertz dipoles 
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Fig. 12. 

 
The characteristics of these curves is similar to the previous case with the difference, that the nodes 
along the x (ξ =1) are at different places, and for big values of x it converges faster to ξ =1. 
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Two pieces of half wave dipoles 
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Fig. 13. 

 
Here we can say the same as with fig.12. regarding the characteristics of the curves. 
 
It is worth mentioning that when feeding the antennas with identical phase and power and placing 
them directly above each other, a significant ~36% excess of power and energy appears. As we 
have already mentioned, the 2 pieces of half wave dipoles radiating with identical phase is 
equivalent to 1 piece of whole wave dipole fed at the middle; thus the 36% of excess power is valid 
also for the whole wave dipole (fed at the middle). 
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Three pieces of half wave dipoles 
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∫  

 
 Fig. 14. 

 
The shape of the curves in this case is dependent on the phase, but its characteristics regarding the 
convergence are similar to the previous ones. It can be seen further, that in the case of antennas 
placed directly above each other, fed with identical phase, the excess power is ~48%. 
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Several pieces of half wave dipoles 
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∫  

 
Fig. 15. 

The factors in front of the integrals with the figures 11. – 15. are calculated as G0 /(2n), where G0 is 
the gain of the individual antenna in main direction, and n is the number of antenna elements. 
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Different aperture radiators 

 

 

Fig. 16. 

 

These curves about different aperture radiators have been made using the generally valid correlation 
3.2 and the approximate radiant functions as found in the related literature.  
 
The results for the aperture radiators are surprising. Namely in this case there will be always energy 
deficit, which although diminishes with the increase of the aperture dimensions, but it never 
exceeds the value of ξ =1. This phenomena is connected with our discussions under 6/c, as we have 

got ξ �1 for the elementary apertures. Thus in spite of the fact that these elementary apertures 

develop beneficial effects, we can get ξ =1 value only for apertures with infinitely big size (namely 
the law of energy conservation can be satisfied only in that case). 
 
It is remarkable that among the examined shapes of constant phase apertures, the one with circular 
shape and cosine type of amplitude distribution has the least energy loss. In the case of apertures 
with quadratic shape we can also observe a fluctuation – depending on its size – which has a 
diminishing tendency with the increase of the dimensions.
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8. Conclusions and arising questions 
 
The analysis and calculation results according to the previous chapters unambiguously prove that 
the law of energy conservation is not generally valid for the resultant field of coherent spherical 
electromagnetic waves (radiation) with identical frequency, since an excess- or deficiency of energy 
can also appear, compared to the total radiated energy, the magnitude of which depends on the 
parameters and geometrical position of the radiating sources. 
 
In the case of incoherent radiation (with different frequencies) the law of energy conservation will 
be satisfied also only, if it is valid for each radiation source separately. 
 
These declarations are valid not exclusively for spherical waves, but also for cylindrical waves and 
moreover for waves in general. 
 
By summarizing it conclusively we can declare as a fact, that the law of energy conservation is not 
generally valid – but only in special cases – for the energy propagation in space (as radiation) in the 
form of waves, concerning the resultant energy of the waves. Here under waves we should 
understand them to be not exclusively electromagnetic waves. 
 
− Further questions arising in connection with the violation of the law of energy conservation 
 
When the necessary conditions are satisfied, where does the excess of energy come from, compared 
to the energy fed into the system; and in the case of energy deficiency, into what does the energy 
gets transformed into (or where does it disappear to)? 
 
Since the discovery of the antiparticles it is a known fact, that when a particle is united with its pair 
of antiparticle, then its rest mass disappears and their mass-energy (in quantum form) will be 
transformed into electromagnetic radiant energy. The question is whether this process is reversible, 
and if (under certain conditions) yes, then whether the excess of radiant energy can result in excess 
of particles and/or antiparticles. Namely whether an excess of mass or mass-energy can be created? 
Or whether the mentioned energy deficiency can be compensated by the rise of mass energy? 
 
Based on the analogy of matter and antimatter, can there be energy and anti-energy? If anti-energy 
does exist, then how can it be interpreted? 
 
As a conclusion we can only say briefly, that the violability of the law of energy conservation – 
besides its practical applicability – can hopefully represent a more generalized interpretation of the 
classical nuclear-physics, as well as of our knowledge about the universe, especially by answering 
the above questions. 
 
Budapest 
28 January 1998 
   János Vajda 
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Remark: 
 
János Vajda has invented a free energy device based on these principles and a patent application has 
been filed (Title: APPARATUS FOR GENERATING AND UTILIZING SURPLUS ENERGY BY 
MEANS OF ELECTROMAGNETIC WAVES, Number: P9601424, Application filed:05/28/1996). 
If anyone wishes to invest into the full development and utilization of that invention please contact 
the author.  
 


