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The magneto-Coulomb effect in spin valve

devices!

Abstract

We discuss the influence of the magneto-Coulomb effect (MCE) on the magneto-
conductance of spin valve devices. We show that MCE can induce magnetocon-
ductances of several per cents or more, dependent on the strength of the Coulomb
blockade. Furthermore, the MCE-induced magnetoconductance changes sign as
a function of gate voltage. We emphasize the importance of separating conduc-
tance changes induced by MCE from those due to spin accumulation in spin valve
devices.
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5.1 Introduction

The recent past has seen an impressive effort in connecting ferromagnetic leads to
ever smaller non-ferromagnetic structures. The main idea behind this is to make
use of the electron spin for device purposes. In a two-terminal, spin valve geome-
try, a resistance difference AR is expected between two basic situations. First, if
the two ferromagnetic leads are magnetized in an anti-parallel fashion, the major-
ity spin species injected at the first ferromagnet is predominantly reflected at the
second ferromagnet. This results in a high resistance state. On the other hand, in
the case of parallel magnetizations, the injected majority spin couples well to the
second ferromagnet, leading to a lower resistance state. With the miniaturization
of the central structure, quantum confinement effects come into play. Recently,
quite some progress has been made in studying spin devices in the presence of
Coulomb blockade [1-11]. The interpretation of the two-terminal data in these
reports has mostly focused on spin transport and spin accumulation. Here, we
discuss another influence on the two-terminal resistance in ferromagnetically con-
tacted nanostructures, namely the magneto-Coulomb effect (MCE) discovered by
Ono et al. [12].

5.2 Magneto-Coulomb effect, definition

In this contribution, we consider a confined conductor weakly connected to two
ferromagnets, F; and Fy (see Fig. 5.1a). The coupling is described by two sets of
resistances and capacitances, Ry, C; and R, Cs, respectively. Furthermore, the
island can be gated by a voltage V; via a capacitor Cy. For a basic introduction
to the MCE, we first concentrate on one of the ferromagnets only, F;, which is
assumed magnetized in the positive direction. Let us suppose that a positive
external magnetic field, B > 0, is applied. In that case, the energy of the spin up
(1) and spin down (] ) electrons shifts by the Zeeman energy, in opposite directions
(see Fig. 5.1b). However, for a ferromagnet, the density of states of both spin
species differs (NT > N!). Hence, a shift in the chemical potential Ay needs to
take place to keep the number of electrons constant [12]:

1
Ap=—5PgupB (5.1)

NT-_N
NT4+NL>
romagnetic ratio and pp is the Bohr magneton. For MCE one should consider

where the thermodynamic polarization P is defined as P = g is the gy-

the thermodynamic quantity P. This P differs considerably from the polarization
determined in tunnel experiments. For the latter, tunnel matrix elements play a
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Figure 5.1: a) Sample structure considered. Two ferromagnetic strips, F; and
F5, with coercive fields B.; and B, are weakly connected to a Coulomb island
(CI) via two tunnel barriers (resistances Ry and Ry and capacitances C; and Cy).
Furthermore, a gate connects capacitively to the island (Cg). b) Sketch of the
density of states N of the two spin species in a ferromagnet, versus energy. When
a magnetic field is applied, the energies of the two spin species shift (AE,) in
opposite directions by the Zeeman effect. Since NT > N, this results in a change
in the work function, AW.

role as well. For Co, P ~ —0.6, whereas for Ni, P ~ —0.8, see Ref. [12]. In prac-
tice, the ferromagnet will be attached to a macroscopic non-magnetic lead. This
demands equal chemical potentials in both metals. Hence, the energy shift in the
ferromagnet translates to a change in the contact potential between the ferromag-
net and the normal metal, A¢, according to, —eA¢ = —Ap [12]. Equivalently,
one could say that the work function of the ferromagnet changes by AW = —Ap.
Since the ferromagnet is weakly coupled to the central island, this shift influences
the Coulomb levels of the latter. In fact, an additional charge Agq is induced onto
the island due to the contact potential change A¢. Applying a magnetic field
thus has an effect that is similar to changing the gate voltage. This equivalence
has been beautifully demonstrated by Ono et al. [12] For the situation sketched
above, we find:

c
Aq(B) = ?;PQMBB (5.2)
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Hence, if no magnetization rotation or switching takes place in the ferromagnet,
the induced charge onto the island changes linearly with the applied field B. In the
Coulomb blockade regime, the conductance G is a function of (induced) charge.
Hence, we find that the conductance changes when a field is applied:

G(q, B) = G(q) + ——Aq(B) (5.3)

Here ¢ denotes the charge state of the island at zero field. For a Coulomb is-
land, G(q) and % can be calculated or measured. The exact theory to apply
depends on the magnitude of the various energy scales involved [13]. The sign of
the magneto-conductance is determined by the signs of both P and %. We note
that the function G(q) is periodic. Hence, % changes sign periodically.

5.3 Magneto-Coulomb effect, magnetization switch-
ing

Next, we incorporate magnetization switching. Again, we start with ferromagnet
F magnetized in the positive direction, but now we ramp down the external field
(B < 0). Then, according to eq. A.3, the conductance changes linearly with B,
as long as the magnetization of the ferromagnet is unchanged. However, when B
reaches the coercive field, i.e., B = —B,, the magnetization of the ferromagnet
switches to the negative direction. Hence, also Ag changes discontinuously, by
Aq. = %PgMBBC. This results in a jump in the conductance via eq. A.3. For
more negative B fields, the conductance change will be linear with B again, but
now with opposite sign. So far, we have considered an island connected to one
ferromagnet only. The extension to a spin valve device with two ferromagnetic
contacts is rather trivial, since their effects can be added. Summarizing, a con-
ductance change linear in B is expected, with discontinuities at the coercive fields
of both ferromagnets.

To illustrate the above, we consider the device in Fig. 5.1a, where F; and F5
have different switching fields. Experimentally, this can be achieved by choosing
thin strips of different widths [14-16]. To calculate the conductance properties
at zero field, we use the orthodox model of Coulomb blockade [13]. We assume
each Coulomb peak to be independent. Although this is not exact, it suffices to
show the principle of MCE. We note also that eq. A.3 can in principle be used
for other Coulomb regimes. In Fig. 5.2a, we show G(q) for a certain choice of
parameters (see caption Fig. 5.2). We use q as a relative quantity, i.e., ¢ = 0
corresponds to an initial situation with N electrons on the island (charge —Ne).
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Figure 5.2: a) Conductance G vs charge state ¢ for the system in Fig. 5.1a. G
is calculated with the orthodox model. Parameters: C; = Cy = 2- 1077 F, Cy =
5-1078F, Ry = Ry = 2.5M$. G is given in units of Go, = 1/(Ry + R2) = 0.2uS.
b) Relative conductance change AGycr/G vs q (in %). AGrpcge(q) equals the
total change in conductance due to magnetization switching of the ferromagnetic
electrodes. This quantity is defined in Fig. 5.3b for a specific choice of ¢ (¢ =
0.69¢, also indicated in a) and b)). We use P = —0.6, g =2 and T = 4.2K.

A change in q by e corresponds to a change in Coulomb level energy by e2/Co
(where C},: is the total capacitance of the island). Next, we will determine the
field dependence of the conductance, using eq. A.3. For this, we need %7 which
we derive from Fig. 5.2a. Furthermore, one requires Ag(B), the charge induced as
a result of the B-field. This function is shown in Fig. 5.3a. It is calculated using
P = —0.6, which is the thermodynamic polarization of cobalt [12]. As discussed
above, discontinuities in Ag(B) are found at the respective coercive fields of the
two ferromagnetic electrodes. To obtain G vs B, we combine eq. A.3 with Figs.
5.2a and 5.3a. In Fig. 5.3b, we show a typical result, evaluated around ¢ = 0.69e.
We find indeed that MCE gives linear conductance changes for fields exceeding
the switching fields. Around the switching fields, discontinuities occur, leading to
hysteretic behavior. We note that Fig. 5.3b does show similarities with several
experiments in spin valve devices. This emphasizes the importance to separate
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Figure 5.3: a) Induced charge on the island, Ag, vs B-field (see eq.A.2). Aq varies
linearly with B, except at the switching fields, where steps are seen. The curve
ignores the demagnetizing field. b) Conductance vs B-field calculated using eq.
A3, Fig. a) and Fig. 5.2a (at ¢ = 0.69¢, indicated in Fig. 5.2). Solid line:
demagnetization field ignored. The sum of the steps is defined as AGy;cp < 0.
With this, we construct Fig. 5.2b. Dashed line: qualitative effect of the rotation
of the demagnetization field at the nanotube (only drawn for positive fields). We
use B.; = 0.097 and B, = 0.11T

both phenomena [16].

Finally, we evaluate the size of MCE for various q. For this, we concentrate on
the discontinuities in Fig. 5.3b. We define the conductance change due to MCE,
AGurcE(q), as the sum of the two conductance steps at the coercive fields, i.e.,
AGurcer(q) = —%PguB(C’chl + C5Bc2)/e. We indicate AGpor(q¢ = 0.69¢)
in Fig. 5.3b. In Fig. 5.2b, we plot the relative magnetoconductance change
AGyeop/G as a function of ¢. Inspecting the graph, we infer that both sign
and magnitude of MCE depend critically on ¢q. The reason is that AGycog/G
is roughly proportional to the derivative of the logarithm of G(q). We note that
Fig. 5.2b changes considerably for a sample with a non-zero background conduc-
tance. Hence, AG o /G changes sign where G(q) reaches its extremes. Further-
more, AGpcr/G reaches its minima and maxima close to the inflection points
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of G(q). The latter has an important consequence. The sharper the Coulomb
peaks get, the higher the maximum conductance change due to MCE becomes.
Consequently, even small Ag can induce sizeable effects, without a fundamental
limitation. In Fig. 5.2a, we obtain a maximum conductance change of 1%. We
note that the system in Figs. 5.2 and 5.3 is comparable to the single wall carbon
nanotubes, measured by Kim et al. [7]. They have G = 0.37uS at 4.5 K, and
find AG/G =~ 1.5%. However, in principle, effects exceeding 100% are also possi-
ble. Indeed, MCE depends strongly on the system parameters, which define the
sharpness of the Coulomb peaks.

5.4 Magneto-Coulomb effect in a carbon nanotube

Recently, much work has been done to investigate magnetic field induced conduc-
tance changes in quantum dot-like structures, such as carbon nanotubes [1-4, 7
11,17] and small metal islands [5,6]. In these studies, conductance changes are
seen that are interpreted in terms of spin accumulation. However, three phenom-
ena are noteworthy: 1) in many cases, the change in conductance sets in before
the magnetic field changes sign, i.e. before the ferromagnetic electrodes switch
their magnetization [1-5,18]. 2) In some studies the magnetoconductance changes
sign as a function of gate voltage [2,4,17,18]. 3) In carbon nanotubes connected
to only one ferromagnet (and to gold), field-induced conductance changes are also
observed [19]. In the latter system spin detection is clearly not possible.

We believe that in many experiments, MCE plays an important role. As seen in
Figs. 5.2 and 5.3, MCE-induced conductance changes have the following proper-
ties: 1) they set in continuously at zero field; 2) they change sign as a function
of gate voltage, exactly at the Coulomb peaks; 3) MCE-induced conductance
changes also take place for Coulomb islands connected to only one ferromagnet,
as discussed above. Hence, the combination of MCE with spin accumulation
could be responsible for part of the phenomena listed above. We note that the
sign changes seen in Refs. [2,4,17,18] have been explained within coherent spin
transport models (see also Ref. [20]). However, in most of these systems Coulomb
blockade was also observed. This implies that MCE should be taken into account
to obtain full correspondence between experiment and theory.

It is important to separate spin accumulation from magnetoresistance effects
such as MCE. The best way to do this is by a direct measurement, using a non-
local, four-probe geometry [16]. If a non-local measurement is not possible, the
MCE and spin accumulation should be separated in other ways. For example
by monitoring the temperature and gate voltage dependence of the relative con-
ductance changes and comparing these data sets to what is expected for MCE.
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Clearly, MCE decreases with a decrease of the conductance peaks. Otherwise,
experiments on nanotubes with two ferromagnetic contacts can be compared to
those with one ferromagnet and a normal metal [4]. However, for a proper com-
parison, it is essential, that the coupling to the normal metal and the ferromagnet
is very similar.

5.5 Discussion and conclussions

Finally, we discuss the influence of a demagnetizing field on the MCE qualita-
tively. This field may play a significant role in carbon nanotubes onto which a
ferromagnetic strip is evaporated. Locally, in the nanotube beneath the ferromag-
net, the demagnetizing field is expected to be quite high, of order 0.5 T (assuming
a field due to the ferromagnet of 1 T close to its surface). The reason for this
is that the aspect ratio of the nanotube is unity in the radial direction. The de-
magnetizing field shifts the local work function of the ferromagnet thus adding to
MCE. Suppose now that the ferromagnet is magnetized in the positive direction
and a negative B field is applied. Then, we expect the ferromagnetic domains
in the vicinity of the nanotube to change their orientation slowly. This locally
rotates the demagnetization field and therefore changes Ag. As a consequence, a
characteristic magnetoconductance trace is expected, with conductance changes
setting in before the ferromagnet actually switches (cf. Ref. [21]). As soon as the
ferromagnet does switch, we are in a mirror image of the original situation and
the contribution of the demagnetizing field jumps back to its old value. We con-
clude that MCE due to the demagnetizing field gives a continuous conductance
change for fields down to the coercive field. Just as for the external-field-induced
MCE, conductance changes are already expected at fields close to 0 T. This is
consistent with the majority of two-terminal experiments [1-6,18]. In Fig. 5.3b,
we sketch the total MCE, including that of the demagnitizing field (dashed line).
We note the similarity of the full MCE curve with what is expected for spin ac-
cumulation. For asymmetric contacts (e.g., C; # Cs), the shape of Fig. 5.3b
will change accordingly. If one of the jumps dominates, only one peak may be
observed experimentally.

In summary, we show that the magneto-Coulomb effect should be taken into
account to explain experiments on spin valve structures in the Coulomb blockade
regime. A proper separation of spin accumulation and MCE is essential for a
good understanding of the first.
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