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1. Radiation from moving charged sphere 

 

It is customary when considering radiation effects from moving charges to assume 

that the charge remains constant while it is accelerating.  This is reasonable since we 

mostly deal with moving electrons or ions.  But an interesting point arises when 

dealing with say spheres that are moving while at the same time their charge is 

changing.  If we take a point in space that is at a distance r large compared to the 

sphere radius we can assume the sphere acts like a point charge.  Then the A field at 

that distant point is given by 
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where Q(t) is the charge as a function of time and v is the velocity.  It follow that A 

must also be a function of time and we can write 
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Then from 
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E  we see that there exists an electric field 
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that is a radiation field following the 1/r radiation law.  Note that the charge is not 

accelerating, the velocity can be constant.  It appears that this aspect of EM radiation 

has been overlooked, certainly it is not mentioned in texts dealing with classical 

electrodynamics.  The vector direction of E is parallel to the velocity direction of Q, 

and its polarity determined by whether Q is changing positively or negatively.  In 

figure 1 Q is becoming more positive and E is anti-parallel to the velocity of Q. 

 

Figure 1.  E field from moving sphere with changing charge. 

 

If that Q changes value for only a short period of time ∆t during which it has moved 

only a short distance that is small compared to r, we can assume that r remains 

constant during ∆t then (3) yields the magnitude of an electric impulse.  Let Q change 

by an amount ∆Q in the time ∆t.  Then the electric impulse E·∆t is given by  
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Now consider a sphere that travels round a circular orbit at velocity v as shown in 

figure 2.  It carries charge Q that alternates in polarity twice per revolution, that 

change of polarity being a fast switching-action taking place at diametrically opposite 

positions.  Thus at the switching point QQ 2=∆ .  The electric impulses seen at the 

distant point P depicted in figure 2 as given by (4) are now all unidirectional.  Of 

course these are superimposed onto the Coulomb field from the sphere, but that 

alternates and it follows a different range law.  It is not difficult to conceive of a 

system of multiple spheres where the Coulomb fields cancel but the impulse fields do 

not.   

 

Figure 2.  Switched sphere with circular orbit. 

 

The distant point also sees an A field from the sphere movement through each semi-

circle where the charge is constant, but this results in an A field vector that has 

constant amplitude between impulses but it rotates.  If we take the two Cartesian 

coordinates in the plane of rotation of that vector, then differentiate those with respect 

to time, it could be argued that this results in a rotating E vector that is at right angles 

to the A vector.  Were that the case, we would find that the mean DC value of the 

electric impulses is negated by the mean DC value of the interposing half sine waves.  

However there is the possibility that such a rotating A field does not yield an E field, 

i.e. the A field has to change magnitude with time in order to create an E field.  For 

example it is known that electrons in fixed orbits do not radiate, yet they do produce a 

rotating A field.  Another pointer to this possibility is the limitation placed on the 

gradient function for the E field arising from the scalar product A⋅v , where the 

gradient only applies to A and not v.   Assuming the rotating A vector does not 

produce an electric field, then we have just the unidirectional impulses with zero field 

between successive impulses.  This leaves us with the satisfying feature that the 

impulses have a mean DC value, we have discovered a method for radiating a DC 

electric field.  This has enormous implication since it unlocks the means for extracting 

energy from the persistent electron spins and orbits that create ferromagnetism. 
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A more sensible arrangement has a sphere at each end of a rod, and means for 

transferring charge from one sphere to the other such as via a resonant inductor, figure 

3.  This doubles the impulse rate.  This can then evolve into multiple spheres set 

around a rotating disc yielding an even greater impulse rate. 

 

Figure 3.  Two spheres 

 

2. Using the radiation to extract energy 
 

We now wish to consider how the unidirectional E field pulses can extract energy 

from a permanent magnet.  We start by considering an arbitrary closed current loop 

driven by a constant current generator I.  Let this loop create an A field at some 

arbitrary position where our sphere is placed, as shown in Figure 4. 
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Figure 4. 

 

Take a small element of length δl of the loop creating the differential field component 

δA at our sphere.  δA lies parallel to δl and is given by 
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where r is the distance from the current element to the field point.  Note that δA does 

not necessarily lie along A, let the angle between δA and A be θ. Thus δA contributes 
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a value δAcosθ to the total field A, and we can express the A field magnitude at this 

point by the integral 
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where θ and r are variables of the integration.  We cannot evaluate this integral for an 

arbitrary loop, fortunately we don’t have to. 

 

Now let our sphere’s charge q be changing with time while it is moving at velocity v 

along the A field direction, see Figure 5. 
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Figure 5 
 
We wish to evaluate the voltage induced into the current loop due to the moving 

sphere, and we start by finding the voltage induced into the element δl.  We find that 

the moving charge produces an E field at δl as given by (3). This E field induces a 

differential voltage δV along δl 
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giving the total voltage induced into the loop as 
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The integral part of this equation is seen to be identical to that in (6), so combining (6) 
with (8) eliminates the integral and yields 
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This voltage appears across the current generator, indicating a power flow P which we 

can express by rearranging (9) as 
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Thus movement of the charge q along the A field direction combined with its changing 

value has caused a power flow at the energy source which created the A field.  This 

power flow can be negative or positive depending on the velocity direction, with or 

against the A field, and the polarity of the change in charge. 
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3. Where does this power flow to or from? 
 

The charge q is known to have “hidden” momentum qA that has been called electro-

kinetic momentum.  Since q is changing with time then so is its hidden momentum, 

and the rate-of-change of momentum results in a force 
dt

dq
AF =  that is either applied 

to overcome the changing momentum or is delivered by the changing momentum.  

The force is moving at velocity v so the mechanical power being delivered to or 

extracted from that force is 
dt

dq
vAP = which is exactly the power flowing at the coil 

given by (10).  The negative sign in (10) represents power flowing from the coil into 

its power supply, which is the case for the velocity along the A field direction while 

dq/dt is positive, that power being delivered mechanically to drive the sphere.  The 

whole system obeys conservation of energy.  Reversing either v or dq/dt creates the 

opposite effect, the sphere obtains a force so as to deliver power mechanically, that 

power being extracted from the electrical source driving the loop.  If we re-place our 

arbitrary current loop with a permanent magnet we have the ability to extract power 

from the quantum forces that drive the electron spins and orbits that are responsible 

for the magnetism. 

 

4. An over-unity electrostatic motor. 
 

 Figure 6 shows a form of electrostatic motor.  Multiple spheres are placed around the 

periphery of an insulated disc.  Two fixed spheres are placed at diametrically opposite 

positions with small whisker brushes that make contact with the moving ones.  The 

fixed spheres are connected to a high voltage DC source so that at each passing sphere 

obtains positive or negative charge.  Thus when the disc is rotated all the spheres on 

one side get charged oppositely to those on the other side, yielding repulsion and 

attraction to the fixed spheres that drives the rotation.  Each time a moving sphere 

makes contact with a whisker its charge gets reversed and a quantity of charge is 

supplied from the DC source.  The net DC current of those charge impulses extracts 

power from the DC source, and this accounts for the power delivered to the output 

shaft.  Now place the motor in a static uniform A field.  At the contact points the 

moving charge gets a force impulse that supports the rotation, and as described 

previously the extra power delivered to the shaft is taken from the source of that A 

field.  If the A field is that of the Earth the motor will appear to be over-unity if the 

reaction on the Earth’s magnetic core is ignored.  
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Figure 6.  Electrostatic motor 



 A more practical version of the electrostatic motor could increase the self-capacitance 

of each moving body (that limits the amount of charge for a given voltage) by using 

mutual capacitance.  This could use planar electrodes on a thin disc of high dielectric 

constant material that rotates close to a conducting ground plane, figure 7. 

 

Figure 7.  Motor with greater capacitance 
 

The electrodes on the Swiss Testatika machine are of this form, perhaps that machine 

used this principle. 
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