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© Cyril Smith, revised August 2009 

 

1.  Introduction 

 

This paper studies charge moving in an A field from the energy perspective.  A charge q 

placed in an A field is said to have a canonical momentum qA, but what does this mean?  

Canonical means “by definition”, so is qA simply a definition without meaning, certainly 

the charge q does not appear to possess mechanical momentum of that value?  And since 

the product qA really does have the dimensions of momentum (mass × velocity), what 

happens if q moves along the A field with velocity v?  The product of momentum 

×velocity is energy, does qAv signify an energy and if so where does it manifest itself?  

Also, since power is energy rate, qA·dv/dt signifies a power transfer associated with the 

charge acceleration, but where?  In this paper we show that these energy considerations 

apply both to the source of the A field and to the moving charge, that the moving charge 

has potential energy qAv which can only be accessed when the charge moves out of the A 

field region and, if the charge gains that energy by being accelerated while within the A 

field, the energy is taken from the current generator that supplies the A field . 

 

2.  A current loop as an A field source 

 

Consider an arbitrary closed current loop driven by a constant current generator I.  Let 

this loop create an A field at some arbitrary position, as shown in Figure 1. 

 

q

r

δA

A

θ

I δl

ta
ng

en
t l

in
e

 
 

Figure 1. 

Take a small element of length δl creating the differential field component δA.  δA lies 

parallel to δl and is given by 

r

I

π

δµ
δ

4

0 l
A =         (1) 

where r is the distance from the current element to the field point.  Note that δA does not 

necessarily lie along A, let the angle between δA and A be θ. Thus δA contributes a value 

δAcosθ to the total field A, and we can express the A field magnitude at this point by the 

integral 
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where θ and r are variables of the integration.  We cannot use this integral to evaluate A, 

since it assumes knowledge of the vector direction of A to obtain θ, so what use does it 

have?  In the next section we derive another equation that has the identical integral, then 

we can eliminate this integral without the need for a solution. 

 

Now place a charge q at the field point and let it be accelerated along the A field 

direction, see Figure 2. 
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Figure 2 
 

We wish to evaluate the voltage induced into the current loop, and we start by finding the 

voltage induced into the element δl.  We find that the moving charge produces an Aq field 

at δl related to its velocity v as 
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and since v is changing with time we get an E field from 
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This E field induces a differential voltage δV along δl 
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giving the total voltage induced into the loop as 

  dl
rdt

dvq
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The integral part of this equation is seen to be identical to that in (2), so combining (6) 

with (2) eliminates the integral and yields 
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dv

I

qA
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This voltage appears across the current generator, indicating a power flow P which we 

can express by rearranging (7) as 

  
dt

dv
qAVIP −==        (8) 

Thus acceleration of the charge q along the A field direction has caused a power flow at 

the energy source which created the A field.  This power flow can be negative or positive 

depending on the direction of the acceleration, with or against the A field, and the 

polarity of the charge q.  For a charge that is initially at rest and is suddenly accelerated 

to a velocity v, the energy found by integrating the power impulse (8) over the impulse 

time has a magnitude qAv.  There is no reaction on the force creating the acceleration, so 

where does this gain or loss of energy then appear?  In the next section we show that the 

energy is accessible when the charge moves out of the A field region.   

 

3.  Longitudinal Induction 
 

Phipps [1] argues that the equation 
dt

dA
E −=  is normally applied to a field point fixed in 

space where the vector potential A changes with time, where one should really use the 

partial derivative 
t∂

∂A
.  When considering a moving charge it is necessary to use the total 

time derivative 
dt

dA
 (Phipps uses 

Dt

DA
 to avoid confusion with the usual notation for the 

derivative of a function of a single variable) which takes account not only of the time 

variation of A (for a fixed point in space) but also the spatial variation in A (for a moving 

point).   This then introduces a convection term associated with charge movement 

through a non-uniform A field 

AvE )( ∇⋅−=          (9) 

where )( ∇⋅v  is a particular scalar convection operator (see Appendix B).  Note, unlike 

classical BvE ×=  induction this E field has a component that lies along the velocity 

direction. 

 

Wesley [3] points out that equation (9) may be rewritten using a vector identity to give 

 ( ) ( )AvAvE ⋅∇−×∇×=        (10) 

which becomes 

 ( )AvBvE ⋅∇−×=         (11) 

Thus (9) which expresses the E field as “seen” by the moving charge already contains the 

classical BvE ×=  induction, as it should.  We can now include this in the general 

equation for electric fields as 

 ( ) BvAv
A

E ×+⋅∇−
∂

∂
−−∇=

t
φ       (12) 

The ( )Av ⋅∇−  term is not mentioned in classical texts on electromagnetism, this 

neglected term could lead to new discoveries in this field.  It may be noted that the scalar 
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product Av ⋅  yields a scalar potential field as “seen” by the moving charge which must 

be added to the scalar potential φ from any spatial charge distribution.  Then (12) can be 

rewritten 

 ( ) Bv
A

AvE ×+
∂

∂
−⋅+−∇=

t
φ       (13) 

Clearly the scalar potential Av ⋅  is maximum when the charge travels along the A 

direction, and for uniform A field is a constant.  When A is non-uniform then the charge 

will “see” a potential gradient along its trajectory, i.e. along the velocity direction.  If we 

choose a Cartesian co-ordinate system where the velocity lies along the x co-ordinate, the 

charge will endure a force 

( )
x

qFx
∂

⋅∂
=

Av
.        (14) 

 

Phipps quotes the Marinov motor [2] as evidence that this is a real effect, this motor has 

also been considered by Wesley [3].  Unfortunately, due to the low drift velocity of 

conduction electrons (v in equation (14)) the forces exerted on them are so small that the 

measured torque on the Marinov motor has been either (a) wrongly attributed to flux 

leakage and the classical Bv ×  Lorentz force, (b) considered to be a measurement artifact 

or (c) considered to be of no real interest.   

 

Like any electric motor the Marinov version can be mechanically driven to perform as a 

generator.  This has the advantage that the driven velocity v in (14) can be significantly 

greater than the electron drift velocity that applies to the motor version, yielding readily 

detectable voltage that cannot be construed as a measurement artifact.  Surprisingly it 

appears that this simple generator experiment to validate (14) has not been carried out, 

the nearest to be found is the Distinti Paradox 2 [4] which is an overly complex version 

of the Marinov motor.  To correct this omission the author, with the help of a UK slip-

ring manufacturer (BGB Engineering Ltd.), has carried out his own tests which are 

reported here for the first time (see Appendix A for the configuration).  Using a 100mm 

diameter slip-ring rotating at speeds up to 1000 RPM, voltages up to 3.3mV DC were 

recorded from brushes at diametrically opposite positions.  Although this experiment 

used open magnets that supplied a B field to the moving ring, the geometry was such that 

the Bv ×  Lorentz force could not account for the induced voltage, whereas integration of 

(9) along the conducting surface between the brushes yielded a voltage in agreement with 

the measurement (see Appendix B for the math).  In view of the importance of equations 

(9) to (14) to the conclusions reached in this paper, the slip-ring experiment should be 

performed by other research establishments. 

 

4.  Energy conservation  

 

Now with the use of (9) it is possible to answer the question posed in section 1.  If we 

consider within an A field a charge that is initially stationary, but is then suddenly 

accelerated along the A direction to a velocity v over a small time period ∆t, the 

mechanical energy needed to do this is the kinetic energy 0.5mv
2
.  If the charge is now 

allowed to escape from the A field region to where A=0, the electric field from (9) will 

apply force to change the velocity to a new value v0.  The final kinetic energy 0.5mv0
2
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differs from that supplied and it is found by integrating (9) over the escape path that the 

difference is exactly qAv.  That gain or loss of energy is fully accounted for by 

integrating equation (8) over the acceleration impulse time ∆t, yielding the energy taken 
from or given back to the current source.  Thus we have a full accounting for the energies 

involved.  We can obtain greater KE of a moving charge than mechanical energy 

supplied, that increase in KE taking place as the potential energy qAv (initially taken 

from the current source creating the A field) is converted to KE by acceleration from the 

electric field (9) as the charge moves out of the A field.  Total energy is conserved. 

 

Figure 3 shows an electron passing a current loop but here the velocities are assumed to 

be held constant over the approach and escape phases.  At the point of nearest approach 

the electron is suddenly accelerated from its initial low approach velocity v1 to a high 

recession velocity v2.  At that acceleration point the A field value is Amax.  During the 

approach phase equation (14) produces the force F1 opposing the movement, hence 

energy must be supplied to maintain v1, and the integration of F1 from large distance up 

to the near point yields an input energy of value eAmaxv1.   Similarly equation (14) 

produces a force F2 aiding the escape velocity v2, where integration of F2 yields an output 

energy eAmaxv2.   Over the acceleration phase the current generator supplies an energy 

pulse of value eAmax(v2-v1). 

 

 

Figure 3.  Electron Passing a Current loop 
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Thus the energy audit reveals 

 

Input Energy   Output Energy  

Initial KE 0.5mv1
2
  F2 integral eAmaxv2 

F1 integral eAmaxv1  Final KE 0.5mv2
2
 

Acceleration energy 0.5m(v2
2
-v1

2
)    

From current supply eAmax(v2-v1)    

 

Output = Input, energy is conserved. 

 

5.  Using a Permanent Magnet 

 

It will be noted that the current supplying the A field is DC, and that (6) represents a 

unidirectional voltage impulse which “loads” the current source.  If we replace the 

current loop with a permanent magnet, do we now have the means for extracting energy 

from it?  If we replaced the single current loop with an array of current loops, the electric 

field radiated by the accelerating charge will induce voltage into each of them, so it is 

possible that the same argument will apply if the loops have atomic dimensions.  There 

are interesting times ahead as this possibility gets explored. 
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Appendix A.  Marinov Generator 
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Appendix B.  Vector evaluation. 

 

In cylindrical coordinates the vector Av )( ∇⋅  is given by 
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where ar, aθ and az are the unit vectors.  In the experiment we have a cylindrical surface 

rotating about the z axis where vr, vz and Az are everwhere zero, hence this reduces to 









+

∂

∂
+








−

∂

∂
=∇⋅

R

AvA

R

v

R

AvA

R

v rr

r

θθθ
θ

θθθ

θθ
aaAv )(    (B2) 

where we have replaced the variable r with the fixed radius R of the slip-ring. 

 

Only the θ component can induce voltage along the conductor, hence the desired integral 

to obtain that voltage is 
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Typical plots of Aθ, Ar and 
θ

θ

∂
∂A

 plotted against angle θ are shown in the figure. 

 

It is seen that the negative area under 
θ

θ

∂
∂A

 exceeds the positive area under Ar  hence 

the integral (B3) yields a finite result.  
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