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1. Introduction 

 

When electric or magnetic systems are charged with energy, it is to be expected that 

the effective mass of the system increases according to Einstein’s mass-energy 

equivalence 2
mcW =  (we have used the symbol W to represent energy instead of the 

usual E to prevent confusion with the use of E as electric field), i.e. the mass increase 

is given by 
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Many texts refer to this as electrostatic mass or electromagnetic mass, which for 

practical purposes is negligible because of the large magnitude of c
2
.    

 

However there are other inertial contributions induced dynamically which could be 

called electrodynamic mass.  This paper deals with these dynamic situations where 

the mass contribution can be positive or negative.  The derivation of this mass 

involves computation of electrodynamic forces created by acceleration from which 

the effective inertial mass automatically follows.  However it is not necessary to think 

in terms of inertial mass, those forces exist in their own right and could be put to good 

use.  The final part of this paper considers systems where those forces appear. 

 

2. Electrically Induced Inertia. 

 

Consider two electrically charged spheres separated by a distance r, Q2 being fixed 

while Q1 is accelerated, Figure 1. 

 

 

Figure 1.  Force induced by acceleration 

 

The moving charge Q1 creates at Q2 a vector magnetic potential field A proportional 

to its velocity given by 

 
r

Q

π

µ

4

10 v
A =         (2) 

and since Q1 is accelerating the A field is changing with time 
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The changing A field creates an electric field E given by 
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so that Q2 endures a force Q2E from that induced E field 
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This is simply the near-field radiation from one accelerating charge affecting a second 

nearby charge. 

 

If we move our reference frame from that fixed in Q2 to one fixed in Q1, we find that 

Q2 is accelerating with reference to Q1, so that Q1 endures a force 
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see Figure 2. 

 

Figure 2.  Induced Reaction Force 

 

Equations (5) and (6) may be considered to be manifestations of Newton’s third law 

of action and reaction.  Note that (6) is an inertial effect occurring at Q1, in this case 

(of two like charges) a negative form of inertia with a force that aids the acceleration 

rather than opposing it.   If Q2 were of opposite polarity (6) would predict positive 

inertia, a force that opposes the acceleration, i.e. the sort of inertia we are familiar 

with when accelerating mass. 

 

Equation (6) can be manipulated into a version using the electrostatic potential φΕ  

from Q2 which is given by 
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yielding 
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where we have also used 
200

1

c
e =µ .  We could surround Q1 with a “galaxy” of fixed 

charges, and still use (8) where φE is then the sum of potentials from that galaxy.  The 

inertial effect given by (8) could be represented by an induced inertial mass mi which 

adds to the actual mass of Q1 
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Q1φE can be recognised as the potential energy of Q1, i.e. the energy to move Q1 out 

of the potential φE into a far region of space where the potential is zero.  In this case 

the negative sign indicates that Q1 would eventually give up that energy as it is 

repulsed by the galaxy of positive charges.  Thus in (9) we have arrived at Einstein’s 

mass-energy equivalence (1) by the use of classical electromagnetic theory, but note 

this allows both positive and negative inertia to be induced. 

 

So far we have not considered retardation effects due to the finite propagation delay.  

This certainly affects the force on Q2 (or on all the other charges in our “galaxy”) 

because that force is time-delayed by a time r/c.  But the electric potential φE through 

which Q1 accelerates is not part of that time delay, that potential already exist so the 

inertial effect at Q1 (8) or (9) is instantaneous. 

 

3. Magnetically Induced inertia 

 

There are many duals between electric and magnetic effects where equations follow 

similar formats, in particular the forces between point charges and between point 

magnetic poles.  Although magnetic poles don’t really exist as such, the formulae are 

still useful for predicting magnetic effects.  Thus by analogy to (9) it is to be expected 

that a magnetic pole of strength Qm amp-meters, when placed in a scalar magnetic 

potential of φm amps, will inherit a magnetically induced inertia which can be 

represented by an inertial mass mm kilograms given by 
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Similar to the electric case, µ0Qmφm is the potential energy of the magnetic pole Qm, 

i.e. the energy involved in moving it from the potential φm to a far region of space 

where the potential is zero.  And as in the electric case the induced inertial mass can 

be positive or negative. 

 

3.1.  Translatory Acceleration 
 

Isolated magnetic poles don’t exist, so we must examine a pair of magnetic poles 

representing a magnetic dipole, a permanent magnet.  For translatory acceleration 

where we must consider the total inertia of the magnet, in a uniform scalar potential 

the induced inertia of the pair would cancel, it requires the scalar potential on one pole 

to be different in value from that on the other pole, viz. there must be an H field 

component along the dipole axis (rotation is considered separately later).  Denoting 

this component as Hµ, we can deduce the induced inertial mass of the system to be 

represented by 
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where l is the length of the dipole.   Note that this is an inertial effect separate from 

the usual quasi-static magnetic forces on the poles that come from the gradient of the 

potential (i.e. an H field) producing an angular alignment force on the magnet, or the 

spatial gradient of the H field producing a translatory force on a stationary magnet.  

Here we are dealing with forces produced when the magnet is accelerated. 

 

In the case of a permanent magnet the pole strength Qm is given by 

 MsQm =   Amp-metres     (12) 



where s is the surface area of the pole face and M is the magnetization.  Hence (11) 

becomes 
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where V is the volume of the magnet.  Now since 

satBM =0µ          (14) 

where Bsat is the saturation flux density we can rewrite (13) as 
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Taking a typical small magnet volume as 10 cm
3
 (10

-5
 m

3
), using 1Tesla magnets 

close to each other so that 
0

1
µ

≈H we can estimate the mutually induced inertias as 

8.83E-17 Kg.  That is so small as to be negligible. 

 

3.2.  Constant Rotation 
 

For rotation about the dipole centre, because the induced inertial mass (10) at opposite 

poles is of opposite polarity, even in a uniform potential we get an unbalance with 

respect to centrifugal forces.  Again the effect is found to be small except for the 

special case detailed next. 

 

Although the magnetic field from the Earth is quite weak, the same cannot be said for 

the magnetic scalar potential φm.  The magnetic Earth can be modelled as a magnetic 

dipole at its centre whose dipole moment µE is 8.24×10
22

 amp-m
2
.  The scalar 

magnetic potential for a dipole is given by 
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where r is the radial distance and θ is measured from the dipole axis.  The radius of 

the Earth is 6.37×10
6
 meters.  At the equator where θ is 90º the potential is zero, but 

at a latitude of say 30º where cos(θ) is 0.5 we get a value of 8×10
7
 amps, and at the 

Earth’s magnetic poles the value would be 1.6×10
8
 amps.  The presence of this huge 

scalar potential is not taught hence is little known, perhaps because until now there 

has been no method of using it to practical purpose.  For calculation purposes the 

notional scalar potential will be taken as that 8×10
7
 amps value. 

 

Putting (12) and (14) into (10) we get for the inertial mass induced at the poles of a 

permanent magnet by the presence of φm 
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Note that Bsatsφm is the potential energy of each magnet pole taken in isolation.  Thus 

for a 1 Tesla magnet with s=4cm
2
 pole faces the potential energy for each pole has a 

magnitude of 32 KJ in the notional Earth’s scalar potential.  The induced mass 

appears as an increase in the real mass at one pole and a decrease at the other pole.  If 

we rotate the magnet about its centre at constant speed, we obtain a dynamic 

unbalance where the radial centrifugal forces do not cancel, there is a net force in one 

direction.  From the centrifugal force equation 

 2ωmrF =         (18) 



we find that the imbalance creates an anomalous force 
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The radial force vector FA is of course rotating with the magnet and points along its 

axis.  Converting the product of pole area s and length l into the volume V, using (14) 

for Bsat and since the product MV is the dipole moment of the magnet we get the 

satisfying result that applies to any dipole of moment µµµµ 
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Taking a 1 Tesla magnet of pole area s=4cm
2
 and of length 20cm, if we rotate this 

about its centre at say 3000rpm then from (19), in the notional Earth’s magnetic 

potential, we find an induced unbalancing force of 7×10
-9

 Newtons.  Again this is 

rather small to be of any practical use. 

 

However it is well known that high-speed rotation of a magnetic dipole can be 

obtained using high permeable material excited by coils.  Thus a sphere or disc of 

permeable within a pair of coils at right angles and driven in phase quadrature, can 

create rotation speeds of its magnetization of MHz and higher.  If the above magnet 

were simulated in this manner at a rotation speed of 1MHz, the induced force 

anomaly would be in the order of 2.8 Newton, which is much more respectable.  Get 

rotation at 10MHz and we have a 28Kg force!! 

 

The force unbalance will create the equivalent of a rotating force vector acting on the 

whole body.  Thus along a given axis this will constitute a vibratory force at the 

rotation frequency, this force being induced because of the presence of the earth’s 

magnetism in the form of its local scalar potential.  We have the technology for 

measuring such a vibratory force and this experiment would seem to be worth doing 

in order to validate the theory.  

 

3.3.  Angular Acceleration 
 

The dynamic unbalance of mass at the poles of the magnet also creates an anomalous 

force on the system when it is accelerated angularly.  We find that in this case the 

anomalous force FA is given by  
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which can be expressed for any dipole µµµµ as 
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In this case the radial force acts at right angles to the dipole axis.  This could account 

for anomalous translatory impulse forces when a magnet suddenly receives a rotation 

impulse, perhaps it explains the Steorn effect.  The anomaly would disappear at the 

equator, and be a maximum at the Earth’s magnetic poles. 

 

3.4. Potential Thrust Motor 
 

A series of alternate polarity rotation impulses (i.e. alternate angular acceleration and 

deceleration) timed to occur each 180° of rotation could create a net unidirectional 



force.  Again at speeds associated with moving masses this would be quite small, but 

if engineered to occur within a disc of magnetically permeable material using coils 

driven by appropriate waveforms the force could be significant.  Could this form the 

basis for a thrust motor using the Earth’s scalar magnetic potential?  It would seem to 

be something worth exploring. 

 

4. Systems using acceleration forces 

 

As stated above a magnetic dipole can be created within a sphere or disc of 

magnetically permeable material that is within an energized coil.  Having two coils at 

right angles and fed with AC at 90° phase difference will create a rotating dipole at 

angular speeds far in excess of those achieved mechanically.  Any advantage to be 

gained from the electrodynamic forces is damped by the real mass of the sphere or 

disc.  However there is another possibility for creating such a high-speed rotation 

where the real mass is much lower.  A ring core having two toroidal windings each 

occupying only half the core can create N and S poles that are diametrically opposite 

as shown in figure 3. 

Figure 3.  FEMM Plot of ring core with two bucking windings 

 

 The real mass can be kept low by having a core of minimum cross section, e.g. the 

core is now simply a loop of iron wire.  Application of two more coils at 90° to the 

first pair and fed with a 90° phase difference will induce a rotation of that dipole at 

the drive frequency, i.e. the poles move along the wire.  At sufficient rotation speeds 

the inertial effect in the Earth’s scalar magnetic potential could invoke radial 

centrifugal-like forces on the wire.     

 

When dealing with the forces on those N and S poles we have to consider separately 

the two cases (a) where the force is at right angle to the wire and the wire tries to 

move and (b) where the force is along the wire and the pole can move within the wire.  

In the first case the actual movement will be restricted by the real mass and the 
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support structure while in the second case there is no such restriction.  It is also 

instructive to note the difference between positive and negative inertia.  Positive 

inertia where the force opposes the acceleration we are all familiar with since mass 

behaves in this way.  Negative inertia where the force aids the acceleration is clearly 

an unstable state where the thing being accelerated (in our case a magnetic pole) 

continues to accelerate at ever increasing rate and, given no restraining influence, 

would disappear into infinity! 

 

4.1. Pole acceleration along a Fe wire 
  

Let us imagine a Fe wire hoop that has induced in it a S pole by the presence of a 

permanent magnet as shown in figure 4. 

Figure 4.  Movement of unstable pole on Fe Hoop 

 

If we now try to move the pole by supplying a small coil around the Fe with a fast 

pulse, in the north hemisphere of the Earth the S pole will endure a force supporting 

the acceleration, it is unstable.  Hence that pole will quickly accelerate away from the 

magnet, only to be stopped by the attractive force between the pole and the magnet.  

That attractive force will then accelerate the pole back in the opposite direction, again 

aided by the negative inertia.  By a series of “kicks” at the resonant frequency that 

unstable pole can be made to oscillate back and forth perhaps by a significant amount. 

 

4.2. Pole acceleration transverse to a Fe wire  
 

The wire hoop is circular, so the oscillatory movement along a circular path will 

create centrifugal radially inward acceleration, so now we have the case where an 

inertial force is invoked transverse to the wire.  This will cause the wire to move and 

since the translation is oscillatory so will be that movement.  Now we have a wire 

vibrating within a magnetic field and this will induce voltage into the wire.  The wire 

could be a multi turn loop of thin Fe and the voltage induced could be used to drive 

current through a load.  Normally that current would load the oscillatory driving force 

and any power drawn would come from that mechanical drive, but here we have that 
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mechanical drive derived from the Earth’s scalar magnetic potential, initiated by a 

series of kicks.  

 

We could create two unstable poles by having another magnet at a diametrically 

opposite position.   That arrangement looks very similar to Steven Mark’s TPU. 

 

4.3. Surface pole on magnet slab 
 

By having a magnetizing coil closely wound onto a ferrite magnet with appropriate 

wire spacing it is possible to obtain a striped pattern of magnet poles.  Having such a 

conditioned magnet within a solenoidal coil we can create sideways kicks to those 

poles, and the array of unstable poles can be made to oscillate in a similar manner to 

that described above, figure 5. 

Figure 5.  Oscillatory array of surface poles 

 

That oscillatory movement can induce voltage into a coil closely wound onto the 

magnet with wire spacing matched to the magnetic stripes.  Could this explain the 

Floyd Sweet VTA?  

 

5. Conclusion. 

 

It has been shown that there is the possibility of invoking inertial forces on magnetic 

poles that are within a scalar magnetic potential.  The Earth’s scalar potential can be 

as high as 1.6×10
8
 amps which should allow significant forces to be observed.  The 

use of this feature for obtaining thrust has been examined.  The possibility of 

obtaining anomalous energy has also been looked at and it seems likely that this 

inertial feature could explain the Steven Mark’s TPU and the Floyd Sweet VTA. 
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Unstable pole array made to oscillate
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