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Abstract
Electromagnetic fields of the simplest time-dependent sources (current loop,
electric dipole, toroidal solenoid, etc), their interactions with an external
electromagnetic field and between themselves are found. They are applied
to the analysis of the Lorentz and Feld–Tai lemmas (or reciprocity-like
theorems) having numerous applications in electrodynamics, optics,
radiophysics, electronics, etc. It is demonstrated that these lemmas are valid
for more general time dependences of the electromagnetic field sources than
it was suggested up to now. It is shown also that the validity of
reciprocity-like theorems is intimately related to the equality of
electromagnetic action and reaction: both of them are fulfilled or violated
under the same conditions. Conditions are stated under which
reciprocity-like theorems can be violated. A concrete example of their
violation is presented.

1. Introduction

The reciprocity theorem has a long history in physics.
It originates from the third Newtonian law stating equality of
action and reaction. Later, Rayleigh, in the first volume of his
encyclopaedic treatise ‘Theory of Sound’ [1] proved certain
relations between the forces acting between two physical
systems and the displacements induced by them. Since there is
no time retardation in the Newtonian mechanics, this statement
looks almost trivial. Furthermore, Rayleigh applied the
reciprocity theorem to optics [2]. We quote him:

Suppose that in any direction (i) and at any distance
r from a small surface (S) reflecting in any manner
there be situated a radiant point (A) of given intensity,
and consider the intensity of reflected vibrations at
any point B situated in direction ε and at distance r ′

from S. The theorem is to the effect that the intensity
is the same as it would be at A if the radiant point
were transferred to B.

He gave no proof of this statement referring to the analogy with
mechanical systems treated in the ‘Theory of Sound’ and to the
optical Lambert law. In all probability, Lorentz [3] was the first
to have formulated the electric part of reciprocity theorem in
its modern form. This theorem has numerous applications

in the theory of electric circuits [4], optics [5, 6], electron
diffraction [7], radiophysics science [8, 9] and biomedical
engineering [10]. The magnetic part of the reciprocity theorem
was obtained by Feld [11] and Tai [12] in the same year, 1992.
It was rederived by Monzon [13] in 1996 who, without knowing
the above papers, pointed out numerous applications of this
theorem. Other applications of the Feld–Tai lemma were given
by Lakhtakia in his book [14].

The aim of this consideration is to use electromagnetic
fields (EMFs) of simplest sources (current loop, toroidal
solenoid (TS) and electric dipole) for the study of the
reciprocity-like theorems.

The plan of our exposition is as follows. In section 2, we
present the formalism of elementary vector potentials (EVPs).
Although they are exposed in many textbooks and treatises
(see, e.g., [15–17]), the lack of coordination between them is
so large that we prefer to give a self-consistent exposition. In
section 3, we apply EVPs to the pure current time-dependent
sources of EMFs. Special attention is paid to the current
loop and TS as well as to their interaction with an external
EMF. Various limiting cases of TSs with periodical current
are investigated. The EMF of the time-dependent electric
dipole and its interaction with an external EMF are studied in
section 4. The EMFs of more complicated point-like toroidal
sources and their mutual interactions are treated in section 5.
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In section 6, by applying the Lorentz and Feld–Tai lemmas
to the charge–current sources studied in previous sections,
we find that these lemmas are fulfilled under more general
conditions than it was known up to now. This obliges us to
consider the derivation of the Lorentz and Feld–Tai lemmas
more carefully. This is done in section 7, where it is shown
that the reciprocity-like theorems are satisfied in the same
cases when the equality of action and reaction is fulfilled.
New reciprocity-like theorems are obtained in the same
section, yet their physical meaning remains unclear to us. The
conditions are stated under which the reciprocity-like theorems
can be violated and a concrete example demonstrating this
violation is presented. A short discussion of the results
obtained is given in section 8.

2. Elementary vector potentials

Consider charge ρ(�r, t) and current �j(�r, t) densities confined
to a finite volume V . Let their time dependence be periodical:

ρ = ρ0 exp(iωt) �j = �j0 exp(iωt). (2.1)

When presenting ρ and �j in such a complex form, one should
keep in mind the static limit of the problem treated. For
example, if one operates with pure current densities and wants
to have the time-independent current in a static limit, then one
puts

�j = �j0 exp(iωt) ρ = 0

and, after all calculations, takes the real parts of the EMF
strengths (see section 3, where the EMF of a current loop and a
TS are considered). On the other hand, if one desires to obtain
the time-independent charge distribution in a static limit, then
one puts

�j = ω �j0 exp(iωt) ρ = iρ0 exp(iωt) ρ0 = div �j0

and, after all calculations, takes the imaginary parts of the
EMF strengths (see section 4, where the EMF of an oscillating
electric dipole is treated).

The electromagnetic potentials outside space region V , to
which the charge–current densities are confined, are given by

�(�r, t) = −4π ik
∑

hl(kr)Ylm(θ, φ)qlm

�A(�r, t) = −4π ik

c

∑ �Alm(τ, �r)alm(τ ) (2.2)

where hl(kr) ≡ h
(2)
l (kr) = jl(kr) − inl(kr) is the spherical

Hankel function of the second kind, jl and nl are the spherical
Bessel and Neumann functions (jl = Jl+1/2

√
π/2x, nl =

Nl+1/2
√
π/2x); Ylm(θ, φ) are the usual spherical harmonics;

and �Alm(τ, �r) are the elementary vector potentials (EVPs).
Values for τ = E,L and M correspond to the electric,
longitudinal and magnetic EVPs, respectively. Their manifest
forms are given by

�Alm(L) = 1

k
�∇hlYlm

�Alm(E) = − 1

k
√
l(l + 1)

curl(�r × �∇)hlYlm

�Alm(M) = − i√
l(l + 1)

hl(�r × �∇)Ylm. (2.3)

If not indicated, the arguments of the spherical Bessel functions
(jl, nl) will be kr , and cos θ will be the argument of the adjoint
Legendre polynomials (Pm

l ). In what follows, we closely
follow the Rose treatise [15] with the exception that instead
of his non-standard radial functions, the usual spherical Bessel
functions are used. EVPs satisfy the following equations:

curl �Alm(M) = ik �Alm(E) curl �Alm(E) = −ik �Alm(M).

It is useful to write out the spherical components of EVP in a
manifest form

[ �Am
l (E)]θ = 1√

l(l + 1)

(l + 1)hl−1 − lhl+1

2l + 1

d

dθ
Ylm

[ �Am
l (E)]φ = m

sin θ
√
l(l + 1)

(l + 1)hl−1 − lhl+1

2l + 1
Ylm

[ �Am
l (E)]r =

√
l(l + 1)

1

kr
hlYlm

[ �Am
l (M)]θ = im

sin θ
√
l(l + 1

hlYlm

[ �Am
l (M)]φ = − ihl√

l(l + 1)

∂Ylm

∂θ
[ �Am

l (M)]r = 0. (2.4)

The multipole coefficients (or form factors) alm(τ ) entering
into (2.2) are defined as

qlm =
∫

jlY
∗
lmρ dV

alm(L) = −1

k

∫
jlY

∗
lm div �j dV = 1

k

∫
jlY

∗
lmρ̇ = icqlm

alm(E) = − 1

k
√
l(l + 1)

∫
curl(�r × �∇)jlY

∗
lm

�j dV

= k√
l(l + 1)

∫
jlY

∗
lm(�r �j) dV

+
1

k
√
l(l + 1)

∫
[(l + 1)jl − krjl+1]Y ∗

lmρ̇ dV

alm(M) = − i√
l(l + 1)

∫
jlY

∗
lm(�r curl �j) dV

= i√
l(l + 1)

∫
jlY

∗
lm div(�r × �j) dV. (2.5)

To escape ambiguities, by ρ̇ we mean − div �j . The EMF
strengths are given by

�H = 4πk2

c

∑
[ �Alm(E)alm(M) − �Alm(M)alm(E)]

�E = −4πk2

c

∑
[ �Alm(E)alm(E) + �Alm(M)alm(M)]. (2.6)

For the axisymmetric charge–current distributions, only
the m = 0 components survive:

qlm = δmoql alm(E) = δmoal(E)

alm(M) = δmoal(M)

[ �Al(E)]θ ≡ [ �A0
l (E)]θ = (l + 1)hl−1 − lhl+1

[l(l + 1)(2l + 1)4π ]1/2
P 1
l

[ �Al(E)]r ≡ [ �A0
l (E)]r = 1

kr

[
l(l + 1)(2l + 1)

4π

]1/2

hlPl

[ �Al(M)]φ ≡ [ �A0
l (M)]φ = −i

[
2l + 1

4πl(l + 1)

]1/2

hlP
1
l . (2.7)
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2.1. Historical remarks

Formulae of this section may be found in a number of
textbooks. Unfortunately, the differences in notation used are
is so large that we prefer to collect here the formulae needed
for the subsequent exposition.

3. Pure current densities

When only current densities are present (ρ = 0), then qlm = 0,
Alm(L) = 0, and

alm(E) = k√
l(l + 1)

∫
jlY

∗
lm(�r �j) dV (3.1)

while alm(M) has the same form (2.5). Taking into account
the fact that

jl(x) ∼ (x)l/(2l + 1)!! nl(x) ∼ −(2l − 1)!!/(x)l+1

for x → 0

one obtains in the static limit (k → 0)

alm(E) → kl+1

√
l(l + 1)

1

(2l + 1)!!

∫
rlY ∗

lm(�r �j) dV

alm(M) → i√
l(l + 1)

kl

(2l + 1)!!

∫
rlY ∗

lm div(�r × �j) dV.

(3.2)
The integrals entering into these equations are usually called
electric and magnetic moments, respectively. On the other
hand, the toroidal moment corresponding to the current density
�j was defined in [18] as

Tlm = −
√
πl

c(2l + 1)

×
∫

rl+1

[
�Y ∗
l,−1,m +

√
l

l + 1

1

l + 3/2
�Y ∗
l,l+1,m

]
�j dV (3.3)

where �Y ∗
j,l,m are the so-called vector spherical harmonics (see,

e.g., [15] for their definition). In view of the identities∫
rl+1

[
�Y ∗
l,l−1,m +

√
l

l + 1

1

l + 3/2
�Y ∗
l,l+1,m

]
�j dV

= −
√

2l + 1

l

1

(l + 1)(2l + 3)

∫
curl(�r × �∇)rl+2Y ∗

lm
�j dV

= − 1

(l + 1)(2l + 3)

√
2l + 1

l

[
(l + 3)

∫
rl+2Y ∗

lm div �j dV

+2(2l + 3)
∫

rlY ∗
lm(�r �j) dV

]
(3.4)

established in [19], one obtains for the pure current densities

Tlm = 2
√
π

c(l + 1)

√
l

2l + 1

∫
rlY ∗

lm(�r �j) dV. (3.5)

Therefore, a toroidal moment Tlm, in the absence of charge
density (ρ = 0), up to a factor independent of the geometric
parameters of the current distribution coincides with the
electric moment (2.5) of this distribution.

3.1. EMF of a current loop

Let the current loop lie in the z = 0 plane with its symmetry
axis along the z axis. Then, its current density is given by

�jL = I0�nφδ(ρ − d)δ(z). (3.6)

Since �r �jL = 0, only the magnetic form factors differ from zero

aml (M) = δm0al(M)

al(M) = iI0d

[
π(2l + 1)

l(l + 1)

]1/2

jl(kd)P
1
l (0). (3.7)

HerePm
l (x) is the adjoint Legendre function. SinceP 1

l (0) = 0
for l even, only odd multipole coefficients contribute to the
EMF of the current loop (P 1

2n+1(0) = (−1)n+1(2n+1)!!/2nn!).
Therefore, for the current loop

�H = 4πk2

c

∑ �Al(E)al(M)

�E = −4πk2

c

∑ �Al(M)al(M). (3.8)

From the facts that: (i) �r �E = 0 and (ii) P �Al(E) =
(−1)l+1 �Al(E) it follows [15, 17] that the radiation field of the
current loop is of a magnetic type (P is the parity operator).

When the time dependence of ρ and �j is cosωt , the non-
vanishing EMF strengths are given by

Eφ = −2πI0dk
2

c

×
∑
l=odd

2l + 1

l(l + 1)
(cosωtjl + sinωtnl)P

1
l jl(kd)P

1
l (0)

Hθ = 2πI0dk
2

c

∑
l=odd

1

l(l + 1)
P 1
l jl(kd)P

1
l (0)

×{cosωt[(l + 1)nl−1 − lnl+1]

− sinωt[(l + 1)jl−1 − ljl+1]}
Hr = 2πI0kd

cr

×
∑
l=odd

(2l + 1)(nl cosωt − jl sinωt)Pljl(kd)P
1
l (0).

(3.9)

To estimate the number of al(M) contributing to the sums
in (3.9), we need the asymptotic behaviour of Jν(x) for x fixed
and ν � 1. This is given by (see [20], ch 8)

Jν(x) ∼ 1√
2πν

(xe
2ν

)ν
.

It follows from this equation that the number n (l = 2n + 1) of
terms contributing to (3.9) with al(M) given by (3.7) should
be slightly greater than 0.7kd.

Consider the particular following cases.
(1) In the static case (k → 0), one obtains

jl(kd) ∼ (kd)l/(2l + 1)!! nl(kr) ∼ −(2l − 1)!!/(kr)l+1

Eφ = 0 Hθ = 2πI0d

cr2

∑ 1

l + 1

dl

rl
P 1
l P

1
l (0)
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Hr = −2πI0d

cr2

∑ dl

rl
PlP

1
l (0). (3.10)

The term l = 1 of this sum

Hθ = πI0d
2

cr3
sin θ Hr = 2πI0d

2

cr3
cos θ

corresponds to the field of a magnetic dipole of the power
m = πI0d

2/c oriented along the z axis.
(2) When the radius d of the loop is so small that kd � 1,

only the l = 1 term contributes to (3.9). Then, EMF strengths
are equal to

Eφ = πI0d
2k2

cr
sin θ

(
cosψ − 1

kr
sinψ

)

Hr = 2πI0d
2k cos θ

cr2

(
sinψ +

1

kr
cosψ

)

Hθ = −πI0d
2k2 sin θ

cr

[(
1 − 1

k2r2

)
cosψ − 1

kr
sinψ

]
.

(3.11)
Here ψ = kr − ωt . These expressions are valid at arbitrary
distances from the current loop.

(3) For large distances (kr � 1), spherical Bessel
functions can be changed by their asymptotic values

jl(kr) ≈ 1

kr
cos

(
kr − l + 1

2
π

)

nl(kr) ≈ 1

kr
sin

(
kr − l + 1

2
π

)
.

Then,

Eφ = −Hθ = πI0dk

c

cosψ

r

×
∞∑
n=0

(−1)n
4n + 3

(n + 1)(2n + 1)
P 1

2n+1j2n+1(kd)P
1
2n+1(0)

Hr = −2πI0d

cr2
sinψ

×
∑

(−1)n(4n + 3)P2n+1j2n+1(kd)P
1
2n+1(0). (3.12)

The energy flux through the sphere of the radius r is

Sr = c

4π

∫
d1EφHθ = 2

c
(I0kd cosψ)2

×
∑ 4n + 3

(n + 1)(2n + 1)
[j2n+1(kd)P

1
2n+1(0)]

2.

The average energy lost for the period is

Sr = 1

c
(I0kd)

2
∑ 4n + 3

(n + 1)(2n + 1)
[j2n+1(kd)P

1
2n+1(0)]

2.

These expressions are valid for arbitrary kd .

3.1.1. Interaction of the current loop with an external EMF.
The interaction of current (3.6) with an external EMF is given
by

U = −1

c

∫
�jL �Aext dV. (3.13)

Since div �jL = 0, the current density can be represented as

�JL = curl �ML
�ML = IL�nz3(d − ρ)δ(z). (3.14)

Substituting this into (3.13) and integrating by parts, one
obtains

U = −1

c

∫
�ML

�Hext dV.

For large distances compared with the loop radius d we have

U = −1

c
�Hext

∫
�ML dV = −�µ �Hext

where

�µ = 1

c

∫
�M dV = 1

2c

∫
�r × �j dV = ILπd

2

c
�nz

coincides with the usual magnetic moment. These equations
illustrate Ampere’s hypothesis according to which the current
loop is equivalent to the magnetic moment normal to it.
When the radius d of the loop tends to zero,

�ML → ILπd
2�nδ3(�r) �JL = curl �ML

δ3(�r) = δ(ρ)δ(z)/2πρ. (3.15)

Let now the dependence of this current flowing in the loop be
fL(t), i.e.

�JL = fL(t) curl �nLδ3(�r) (3.16)

(the factor πILd
2
L is absorbed into fL(t)). Then, the EMF

potentials and field strengths are given by

�AL = − 1

c2r2
DL(�r × �nL) �EL = 1

c3r2
ḊL(�r × �nL)

�HL = 1

c3r

[
(�r �nL)
r2

�rFL − �nLGL

]
(3.17)

where we put

DL = D(fL) = ḟl +
c

r
fL

FL = F(fL) = f̈l +
3c

r
ḟL +

3c2

r2
fL

GL = G(fL) = f̈l +
c

r
ḟL +

c2

r2
fL. (3.18)

The arguments of the fL functions entering into DL, FL and
GL are tr = t − r/c; the dots above the fL, DL, FL and GL

functions denote time derivatives. When fL does not depend
on time, one obtains the field of the elementary magnetic dipole

�HL = p

r3

[
3�r (�r �nL)

r2
− �nL

]

of the power p = fL/c. Obviously, equations (3.15)–
(3.18) generalize (3.11) to arbitrary time dependences and
orientations.

3.2. Historical remarks on the current loop

Equations (3.11) describing the EMF of the current loop in
the long-wave limit may be found in many textbooks (see,
e.g., Jackson [17], Stratton [21], Panofsky and Phillips [22]).
In all probability, equations (3.9), valid for arbitrary distances
and frequencies, may be found in journal papers; however, the
author is unaware of any. It should be mentioned that even
nowadays the EMFs of current loops are being investigated
both theoretically [23] and experimentally [24].
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Figure 1. The poloidal current flowing on the surface of a torus.

Figure 2. The coordinates R̃ and ψ parametrizing the torus.

3.3. Electromagnetic field of the toroidal solenoid

Consider the poloidal current flowing on the surface of a torus
(figure 1)

�jT = − gc

4π
�nψ δ(R − R̃)

d + R̃ cosψ
�nψ = �nz cosψ − �nρ sinψ.

(3.19)
The coordinates R̃, ψ and φ are related to the Cartesian
coordinates as follows:

x = (d + R̃ cosψ) cosφ y = (d + R̃ cosψ) sin φ

z = R̃ sinψ. (3.20)

The condition R̃ = R defines the surface of a particular torus
(figure 2). For R̃ fixed and ψ, φ varying, the points x, y, z

given by (3.20) fill the surface of the torus (ρ−d)2 + z2 = R2.
The choice of �j0 in the form of (3.19) is convenient, because in
the static case a magnetic field H equals g/ρ inside the torus
and vanishes outside it. In this case, g may also be expressed
through either the magnetic flux � penetrating the torus or the
total number N of turns in a toroidal winding and the current
I in a particular turn:

g = �

2π(d − √
d2 − R2)

= 2NI

c
.

Let the current in a TS winding periodically change with time:
�j = �j0 exp(iωt). Since

�r × �jT = gc

4π
δ(R̃ − R)�nφ

and

�r �jT = gcd sinψ

4π

δ(R̃ − R)

d + R cosψ

one has

div(�r × �j) = 0 alm(M) = 0 alm(E) �= 0.

Therefore,

�A = −4π ik

c

∑ �Al(E)al(E)

�H = −4πk2

c

∑ �Al(M)al(E)

�E = −4πk2

c

∑ �Al(E)al(E) (3.21)

( �A is the vector potential). From the facts that: (i) �r �H = 0
and (ii) P �Al(M) = (−1)l �Al(M), it follows [15, 17] that the
radiation field of a TS is of electric type.

The electric form factor al(E) for the radiating TS is equal
to

al(E) = 1

4
gcdRk

√
2l + 1

πl(l + 1)
Il

Il =
∫ 2π

0
jl(ky)Pl(x) sinψ dψ (3.22)

where y = [d2 + R2 + 2dR cosψ]1/2 and x = R sinψ/y.
It easy to check that al(E) = 0 for l even. Let the current time
dependence be cosωt . Then the EMF is given by the real parts
of �A, �E and �H :

Aθ = gdRk2

2

∑ 1

l(l + 1)
IlP

1
l {[(l + 1)jl−1 − ljl+1]

× sinωt − [(l + 1)nl−1 − lnl+1] cosωt}
Ar = gdRk

2r

∑
(2l + 1)IlPl(jl sinωt − nl cosωt)

Hφ = gdRk3

2

∑ 2l + 1

l(l + 1)
IlP

1
l (nl cosωt − jl sinωt)

Eθ = −gdRk3

2

∑ 1

l(l + 1)
IlP

1
l {[(l + 1)jl−1 − ljl+1]

× cosωt + [(l + 1)nl−1 − lnl+1] sinωt}
Er = −gdRk2

2r

∑
(2l + 1)IlPl(jl cosωt + nl sinωt). (3.23)

The number of al(E) contributing to the sums in (3.23) is the
same as for current loop: it should be slightly greater than
0.7kd.

Consider the following particular cases.
(1) In the static limit (k → 0) one obtains

Il → kl

(2l + 1)!!
Cl al(E) → gcdRkl+1

4(2l + 1)!!

√
2l + 1

πl(l + 1)
Cl

Tlm = δm0Tl Tl = gdR
√
l

2(l + 1)
Cl

Cl =
∫ 2π

0
ylPl

(
R sinψ

y

)
sinψ dψ (3.24)

where Tlm is the same as in (3.5). This integral can be taken in
a closed form. We give its value only for l = 1

C1 = πR a1(E) = πgdR2k2c

4
√

6π
.

The EMF strengths of the TS decrease as k2

Hφ ∼ −gdRk2
∑ 1

l(l + 1)

1

rl+1
ClP

1
l
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Eθ ∼ −gdRk2

2
ct

∑ Cl

l + 1

1

rl+2
P 1
l

Er ∼ gdRk2

2
ct

∑
ClPl

1

rl+2
. (3.25)

On the other hand, the vector potential of a TS does not vanish
in the static limit

Aθ → −gdR

2

∑ Cl

l + 1
P 1
l

1

rl+2

Ar → gdR

2

∑ 1

rl+2
ClPl. (3.26)

The linear time dependence in �E (for ωt � 1) arises when one
differentiates the cosωt term in �A and then let ω go to zero.
For the infinitely thin TS (R � d), Cl is reduced to

C2n+1 = πRd2n(−1)n
(2n + 1)!!

2nn!
.

(2) Infinitely small toroidal solenoid (kd � 1).
Obviously, only the l = 1 term contributes to sums in (3.23)

I1 = πkR

3
a1(E) = πgdR2k2c

4
√

6π

Er = πgdR2k2

2r2
cos θ

[
cosψ − 1

kr
sinψ

]

Eθ = πgdR2k3

4r
sin θ

[
sinψ

(
1 − 1

k2r2

)
+

1

kr
cosψ

]

Hφ = πgdR2k3

4r
sin θ

[
sinψ +

1

kr
cosψ

]
. (3.27)

For estimations, let the major radius d of a TS be 10 cm. We
rewrite the condition kd � 1 in the wavelength language

2πd

λ
≈ 60

λ
� 1.

This means that equations (3.27) will work for λ � 5m.
(3) Infinitely thin toroidal solenoid (R � d). Taking into

account the fact that

P2n+1(x) → −P 1
2n+1(0)x for x → 0

one obtains

I2n+1 = −R

d
P 1

2n+1(0)D2n+1

D2n+1 =
∫ 2π

0
j2n+1(ky) sin2 ψ dψ

a2n+1(E) = −1

4
gcR2k

√
4n + 3

π(2n + 1)2(n + 1)
P 1

2n+1(0)D2n+1.

(3.28)
For R � d (but for arbitrary kd and kR) D2n+1 can be taken
in a closed form (see the appendix):

D2n+1

= π{J0(kR)j2n+1(kd) − 1
2J2(kR)[j2n+3(kd) + j2n−1(kd)]}.

(3.29)

If, in addition, kR � 1, then

D2n+1 = πj2n+1(kd)

and

a2n+1(E)

= − π

4
gcR2k

√
4n + 3

π(2n + 1)2(n + 1)
P 1

2n+1(0)j2n+1(kd).

(3.30)

On the other hand, if kR � 1, then

D2n+1

= 2

kd

√
2π

kR
cos

(
kR − π

4

)
[(n + 1)j2n+2(kd) + nj2n(kd)]

(3.31)

(we cannot substitute instead of J2n(kd) and J2n+2(kd)

their asymptotic values, since the presence of J2n(kd) and
J2n+2(kd) guarantees the convergence of electromagnetic
strengths, (3.23)).

For kd � 1, equations (3.27) are not applicable. For
example, for d = 10 cm and λ = 1cm, kd ≈ 60. The possible
outcome is to take the minor radius of a TS as small as possible.
Equations (3.23) withal(E)given by (3.28) and (3.29) are valid
for arbitrary frequencies if R � 2 cm (for d = 10 cm). The
advantage of electric form factors (3.28) and (3.29) is that they
do not involve integration, which is very cumbersome for high
frequencies.

(4) Large distances (kr � 1). Then,

Eθ = Hφ = −gdRk2

4r
sinψ

×
∑

(−1)n
4n + 3

(2n + 1)(n + 1)
I2n+1P

1
2n+1 (3.32)

Er = gdRk

2r2
cosψ

∑
(4n + 3)(−1)nI2n+1P2n+1.

The energy flux through the sphere of the radius r is

Sr = c

4π
r2

∫
d1EθHφ

= c

(
gdRk2 sinψ

2

)2 ∑ 4n + 3

2(n + 1)(2n + 1)
I 2

2n+1. (3.33)

Correspondingly, the average energy lost for the period is

Sr = c

2

(
gdRk2

2

)2 ∑ 4n + 3

2(n + 1)(2n + 1)
I 2

2n+1.

3.3.1. Interaction of a TS with an external EMF. The
interaction of a TS with external EMF is given by

U = −1

c

∫
�jT �Aext dV. (3.34)

Since div �jT = 0, the poloidal current (3.19) flowing on the
surface of the torus can be represented in the form [25]

�jT = curl �M div �M = 0

�M = �nφ gc

4πρ
3

(
R −

√
(ρ − d)2 + z2

)
div �M = 0.

(3.35)
That is, the magnetization �M has only the azimuthal
component and differs from zero only inside the torus (middle

544



EMFs for testing reciprocity-like theorems

Figure 3. The poloidal current �j flowing on the surface of a torus is
equivalent to the magnetization �M confined to the interior of the
torus and to the toroidization �T directed along the axis of the torus.

part of figure 3). Since div �M = 0, the magnetization �M , in
its turn, can be written as

�M = curl �T div �T �= 0 (3.36)

where

�T = �nzT

T = gc

4π

[
3

(
d −

√
R2 − z2 − ρ

)
ln

d +
√
R2 − z2

d − √
R2 − z2

+3
(
d +

√
R2 − z2 − ρ

)
3

(
ρ − d +

√
R2 − z2

)

× ln
d +

√
R2 − z2

ρ

]
. (3.37)

Thus, T differs from zero in two space regions (see the lower
part of figure 3) as follows.

(a) Inside the torus hole defined as 0 � ρ � d − √
R2 − z2,

where T does not depend on ρ

Tz = gc

4π
ln

d +
√
R2 − z2

d − √
R2 − z2

. (3.38)

(b) Inside the torus itself (d − √
R2 − z2 � ρ � d +√

R2 − z2) where

T = gc

4π
ln

d +
√
R2 − z2

ρ
. (3.39)

In other space regions, T = 0. Therefore,

�jT = curl curl �T div �T �= 0. (3.40)

Substituting (3.40) into (3.34), one obtains

U = − 1

c2

∫
�̇E �T dV

(the dot above �E denotes time derivative). For distances large
compared with the large radius of a TS

U = − 1

c2
�̇E

∫
�T dV. (3.41)

Despite the fact that T is rather complicated, the volume
integral looks very simple

∫
�T dV = �nz πcgdR

2

4
. (3.42)

Physically, equations (3.35), (3.36) and (3.40) mean that the
poloidal current �j given by (3.35) is equivalent (i.e. produces
the same magnetic field) to the toroidal tube with magnetization
�M defined by (3.36) and to toroidization �T given by (3.37).

This is illustrated in figure 3. Obviously, these equations
generalize Ampere’s hypothesis.

Now let the minor radius R of a torus tend to zero (this
corresponds to an infinitely thin torus). Then, the second term
in (3.37) drops out, while the first one reduces to

T → gc

2πd
3(d − ρ)

√
R2 − z2. (3.43)

For infinitesimal R√
R2 − z2 → 1

2πR
2δ(z).

Therefore, in this limit,

�j = curl curl �T �T = �nz gcR
2

4d
δ(z)3(d − ρ). (3.44)

That is, the vector �T is confined to the equatorial plane of a
torus and is perpendicular to it. Let now d → 0 (in addition
to R → 0). Then,

1

d
3(d − ρ) → d

2ρ
δ(ρ)

and the current of an elementary (i.e. infinitely small) TS is

�j = curl curl �T �T = 1
4πcgdR

2δ3(�r)�nz. (3.45)

Let now the dependence of the current flowing in the toroidal
solenoid be fT (t), i.e.

�JT = fT (t) curl �nT δ3(�r). (3.46)

(the factor 1
4πcgdT R

2 is included in fT (t)). Then, the EMF
potentials and field strengths are given by

�AT = 1

c3r

[
−�nTGT +

1

r2
�r(�r �nT )FT

]

�ET = 1

c4
r

[
�nT ĠT − 1

r2
�r(�r �nT )ḞT

]

�HT = 1

4c3r
(�r × �nT )D̈T (3.47)

where the functions DT = D(fT ), FT = F(fT ) and GT =
G(fT ) are defined by (3.18). When fT is independent of t , the
EMF strengths are zero, only the vector potential survives

�AT = − 1

4cr3
fT

[
�nT − 3

r2
�r(�r �nT )

]
.

Clearly, (3.47) generalizes (3.27) for arbitrary time depen-
dences and orientations.
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3.3.2. Toroidal solenoids with a more realistic winding.
Usually, the toroidal coil twists along the torus surface having
not only a �nψ component, but also a �nφ component parallel to
the torus equatorial line. Then, the total density is given by

�j = cosα �jT + sin α �jL (3.48)

where �jL and �jT are given by (3.6) and (3.19), respectively, and
α is the inclination angle of the current �j towards the vector
�nψ .

Since the EMF is a linear function of the current density,
it is given by

�E = cosα �ET + sin α �EL
�H = cosα �EH + sin α �HL

(3.49)
where �EL, �HL and �ET , �HT are the EMFs of the current loop
and TS given by (3.9) and (3.23), respectively. For α = 0
and α = π/2 the EMF (3.49) is transformed either into an
EMF (3.23) of a TS or an EMF (3.9) of a current loop.

However, if there is a need to create pure toroidal
EMF (3.23), then one should somehow compensate the �nφ
component of �j . For this, after finishing the toroidal winding
(3.48) (i.e. when the last turn of the toroidal winding meets the
first one), one closed turn lying in the equatorial torus plane and
having the direction opposite to �nφ should be added. Another
possibility is to use a winding consisting of an even number
of layers. If the directions of coils in the even and odd layers
differ by the sign of α, then �jφ current components of even
and layers compensate each other and only the �jψ component
survives.

3.4. Historical remarks on TSs

TSs play an important role in physics and technology.
As the simplest three-dimensional topologically non-trivial
objects, they have been used for the experimental verification
of the Aharonov–Bohm effect [26]. The corresponding
calculations were performed in [27]. They possess a number
of non-trivial characteristics such as toroidal [18, 28] and
‘hidden’ [29] moments. Exact vector potentials of finite static
TSs were evaluated by Luboshitz and Smorodinsky [30], in
a non-standard gauge, and in [31], in a Coulomb gauge.
Similarly to the static magnetic TSs outside which the EMF
strengths disappear, but the magnetic vector potential differs
from zero, there are electric TSs outside which the EMF
strengths are zero but non-trivial electric vector potentials
differ from zero [25, 32]. Furthermore, there exists the
toroidal Aharonov–Casher effect which describes quantum
(not classical) scattering of toroidal dipoles by the electric
charge [33].

Turning to TSs with time-dependent currents, one should
mention two papers by Page [34]. However, his EMF
strengths were presented in the integral form, unsuitable for
practical applications. The EMF of TSs for a number of time
dependences were studied in [35]. Unfortunately, the most
interesting case of a periodical current was considered for
a very special case of an infinitely small TS. The multipole
expansion of the EMF for a TS with periodical current was
given in [19, 36]. However, these presentations were too
schematic, without practical applications. Equations (3.47) for
the EMF of an infinitely small TS was earlier been obtained

by Nevessky [37] and, also, in [38]. Their generalization
for more complicated toroidal configurations is given in [39].
In the same reference, as well as in [25], the charge–
current toroidal configurations were found outside which non-
trivial (that is unremovable by a gauge transformation) time-
dependent electromagnetic potentials were different from zero
despite the vanishing EMF strengths. This makes possible the
performance of experiments investigating the time-dependent
Aharonov–Bohm effect. All these studies are summarized in
[40].

What is new in this section? It seems that general
equations (3.23) defining EMFs of TS and corresponding
particular cases (3.24)–(3.33) were not considered previously.

We briefly enumerate the applications of TSs as follows.

(a) Toroidal transformers are very effective since the leakages
of the EMF into the surrounding space are very small.

(b) TSs are widely used in modern accelerators. Being placed
along the circumference, they generate electromagnetic
field concentrated inside the torus holes (see e.g. [25],
where the exactly soluble configuration of a TS producing
a time-dependent EMF confined to the interior of a circular
tube was considered).

(c) According to [41] ‘Air-cored toroidal inductors are used in
power electronic circuits because they are relatively easy
to make, they do not saturate and they do not produce
troublesome external magnetic fields.’

(d) Finally, one should mention Birkeland’s electromagnetic
gun (see, e.g., [42]) in which the set of toroidal solenoids
are used for the acceleration of an iron bullet. The modern
version of Birkeland’s gun is realized in US Star Wars
programme, officially known as the Strategic Defence
Initiative.

4. EMF of an electric dipole

Consider two point charges at the points ±ad �n. Their charge
density is given by

ρd = e[δ3(�r − ad �n) − δ3(�r + ad �n)].

For an infinitely small dipole, this takes the form

ρd = −2ea(�n �∇)δ3(�r) �∇i = ∂

∂xi
.

Now let the charge density depend on time

ρd = f (t)(�n �∇)δ3(�r)

(factor −2ea is included in f (t)). The corresponding current
density is given by

�jd = −ḟ (t)�nδ3(�r). (4.1)

The following EMF strengths correspond to these densities:

�Hd = 1

c2r2
(�r × �n)Ḋd

�Ed = 1

c2r

[
�nGd − 1

r2
(�n�r)�rFd

]
. (4.2)
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Now let the time dependence of the charge density be cosωt :

ρd = −2ead cosωt(�n �∇)δ3(�r)
�jd = −2eadω sinωt �nδ3(�r). (4.3)

For the unit vector �n along the z axis, one obtains

Hdφ = −2eadk2

r
sin θ

(
cosψ − sinψ

kr

)

Edθ = −2eadk2

r
sin θ

[
cosψ

(
1 − 1

k2r2

)
− sinψ

kr

]

Er
d = 4eadk

r2
cos θ

(
sinψ +

1

kr
cosψ

)
ψ = kr − ωt.

(4.4)
In the static limit (k → 0) one obtains the field of an electric
dipole

Edθ → 2ade

r3
sin θ Edr → 4ead

r3
cos θ Hdφ → 0.

For the oscillating electric dipole with a finite ad , oriented
along the z axis

ρd = i exp(iωt)ρd0

ρd0 = e

2πa2
d sin θ

δ(r − ad)[δ(θ) − δ(π − θ)]

�jd = �nrjd jd = −ω exp(iωt)jd0

jd0 = e

2πr2 sin θ
3(ad − r)[δ(θ) − δ(π − θ)] (4.5)

If we desire to obtain, in the static limit, the static electric
density ρd0, we should take, at the end of all calculations, the
imaginary parts of the EMF strengths (sinceρd in (4.5) contains
the imaginary unit factor i). It turns out that aml (M) = 0, i.e.
only the electric form factors with l odd contribute to the EMF
strengths,

aml (E) = δm0al(E) al(E) = −2ec

√
1

l(l + 1)
Fl(kad)

(4.6)

Fl(kad) =
∫ kad

0
jl(x)x dx+kad

(l + 1)jl−1(kad) − ljl+1(kad)

2l + 1
.

For kad → 0 this reduces to

Fl → l + 1

(2l + 1)!!
(kad)

l.

Taking the imaginary parts of the EMF strengths (3.18) with
al(E) given by (4.6), one obtains

Hφ = −2ek2
∑ 2l + 1

l(l + 1)
(cosωtjl + sinωtnl)P

1
l Fl(kad)

Eθ = −2ek2
∑ 1

l(l + 1)
{cosωt[(l + 1)nl−1 − lnl+1]

− sinωt[(l + 1)jl−1 − ljl+1]}P 1
l Fl(kad)

Er = −2ek

r

∑
(2l + 1)(cosωtnl − sinωtjl)PlFl(kad). (4.7)

We evaluate the square bracket entering into the definition of
the toroidal moment (see the last line in (3.4)) for the electric
dipole charge–current density given by (4.5):

(l + 3)
∫

rl+2Y ∗
lm div �jd dV + 2(2l + 3)

∫
rlY ∗

lm(�r �jd) dV

= δm0
2eωl(l + 1)

(l + 2)
al+2
d (4.8)

(factor exp(iωt) is omitted).

4.1. Interaction of an electric dipole with an external EMF

Substituting the charge–current densities of the elementary
electric dipole

ρd = f (t)(�n �∇)δ3(�r − �rd) �jd = −ḟ (t)�nδ3(�r − �rd)

into the expression for the interaction energy

U =
∫ [

ρd(�r)�ext (�r) − 1

c
�jd(�r) �Aext (�r)

]
dV

one obtains

U = −fd(t)(�n �∇)�ext (�rd) +
1

c
ḟd(t)�n �Aext (�rd). (4.9)

Let the external EMF be the field of a TS with a constant current
in its winding. Then, outside the TS, �ext = 0, �Eext = 0,
�Hext = 0, �Aext �= 0 and

U = −1

c
ḟd(t)�n �Aext (�rd). (4.10)

It is surprising enough that the interaction energy differs from
zero in the space region where �Eext = �Hext = 0. Despite the
fact that EMF strengths vanish outside the static TS, the vector
potential �A cannot be eliminated by a gauge transformation
everywhere in this region. This is due to the fact that

∫ �A d�s
along any closed path passing through the TS hole, is equal
to the magnetic flux inside the TS. However, the space region
where �A differs from zero depends on the gauge choice (see,
e.g., [40]). On the other hand, the interaction energy (4.10)
should not depend on the gauge choice. The origin of this
inconsistency is unclear for us.

4.2. Historical remarks on electric dipoles

The EMF of an electric dipole is analysed almost in any
textbook on classical electrodynamics. However, all of them
are limited to the long-wave limit, expressions (4.2) and (4.4).
We did not see the general equations (4.7). This is due to the
fact that for the typical wavelength of the short-wave range
(λ = 25 m), kad � 1 for ad ∼ 10 cm. In this case
equations (4.7) are reduced to (4.2) and (4.4). However, in
the microwave region equations (4.7) should be used.

5. More complicated elementary toroidal sources

In this section we give, without derivation, the EMFs of more
complicated toroidal sources obtained earlier in [39]. They are
needed for the evaluation of integrals entering in the Lorentz
and Feld–Tai theorems. Unfortunately, their omission makes
the text unreadable. Consider the hierarchy of a TS each turn
of which is again a TS. The simplest of them is the usual TS
obtained by the replacement of a single turn, representing the
current loop, by the infinitely thin TS. We denote this TS by
T S1 (the initial current loop will be denoted by T S0). The
next-in-complexity case is obtained when each turn of T S1 is
replaced by an infinitely thin toroidal solenoid ts1 with the
time-dependent current in its winding. The thus obtained
current configuration denoted by T S2 is shown in figure 4.
We see on it the poloidal current �j flowing on the surface
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Figure 4. A toroidal source of the second order is obtained if
instead of each particular turn of a usual TS, a new infinitely thin TS
ts is substituted with the current �j in its winding; it generates the
magnetization �M covering the surface of the original TS and
directed along its meridians. The complete magnetization from all
ts generates the closed tube of toroidal moments T filling the
interior of the original TS and generating in turn the second-order
toroidal moment shown by the vertical arrow.

of a particular torus ts1. Only one particular turn with the
current �j and only the central line of ts1 are shown (for the
torus (ρ − d)2 + z2 = R, the central line is defined as ρ = d,
z = 0). The arising time-dependent magnetization (due to
the current �j flowing in ts1) coincides with the central line
of ts1 and lies on the surface of T S1, in its meridional plane.
Since there are many turns in T S1, (each of them is the same as
ts1), the superposition of their magnetizations gives the overall
magnetization �M , filling the surface of T S1 (see figure 1 or
the upper part of figure 3, where �j now means �M). This
distribution of magnetization is equivalent to the closed chain
of toroidal moments �T aligned along the central line of T S1

(see the middle part of figure 3, where �M now means �T ).
The closed chain of toroidal moments leads to the appearance
of a higher-order toroidal moment shown in figure 4 by the
vertical arrow. When the dimensions of this, just obtained,
configuration T S2 tend to zero, we obtain (see [25, 39])

�j2 = f2(t) curl(3)(�nδ3(�r)) curl(3) = curl · curl · curl .
(5.1)

The corresponding vector potential and field strengths are
given by

�A2 = 1

c4r2
D

(2)
2 (�r × n) �E2 = − 1

c5r2
D

(3)
2 (�r × n)

�H2 = �n 1

c5r
G

(2)
2 − 1

c5r3
�r(�r �n)F (2)

2 . (5.2)

Here the subscripts on the D, F and G functions mean that
they depend on the f function with the given index, while the
superscript denotes the time derivative of the order equal to the
superscript. For example,

D(n)
m = dn

dtn
D(fm).

The argument of f functions is t − r/c. By comparing (5.1)
and (5.2) with (3.16) and (3.17) we conclude that for the
current configurations T S0 and T S2 the electromagnetic fields
coincide everywhere except for the origin if the following
relation between the time-dependent intensities is fulfilled:
f

(2)
2 = −f0/c

2. This means, in particular, that the EMF of
the static magnetic dipole (f0 = constant) coincides with that

of the current configurationT S2 if the current in it quadratically
varies with time (f2 = −f0c

2t2/2). It follows from this
that the magnetic field of the usual magnetic dipole can be
compensated everywhere (except for the origin) by the time-
dependent current flowing in T S2.

Now we are able to write out the EMF for the point-like
toroidal configuration of arbitrary order. Let

�jm = fm(t) curl(m+1)(�nδ3(�r)). (5.3)

We consider even and odd m separately.

5.1. Toroidal configurations of even order

Let m be even (m = 2k, k � 0). Then

�A2k = (−1)k+1 1

c2k+2r2
D

(2k)
2k (�r × n)

�E2k = (−)k
1

c2k+3r2
D

(2k+1)
2k (�r × n)

�H2k = (−1)k
1

c2k+3

[
1

r3
�r(�r �n)F (2k)

2k − �n1

r
G

(2k)
2k

]
. (5.4)

The distribution of the radial energy flux on the sphere of radius
r is given by

Sr = c

4π
( �E × �H)r = sin2 θ

4πc4k+5r2
D2k+1

2k G2k
2k.

Here θ is the angle between the symmetry axis �n and a
particular point on the sphere. The total energy flux through
this sphere is

r2
∫

Sr d1 = 2

3c4k+5
D2k+1

2k G2k
2k.

The interaction of the even toroidal source with the external
EMF is given by

U = −f2k

c

∫
dV �Aext curl2k+1(�nδ3(�r − �rs))

= (−1)k+1 f2k

c2k+1
(�n �H(2k)

ext ) (5.5)

where the external magnetic field is taken at the position of a
point-like toroidal source.

5.2. Toroidal configurations of odd order

On the other hand, for m odd (m = 2k + 1, k � 0)

�A2k+1 = (−1)k
1

c2k+3

[
1

r3
�r(�r �n)F (2k)

2k+1 − �n1

r
G

(2k)
2k+1

]

�E2k+1 = (−1)k+1 1

c2k+4

[
1

r3
�r(�r �n)F (2k+1)

2k+1 − �n1

r
G

(2k+1)
2k+1

]

�H2k+1 = (−1)k
1

c2k+4r2
D

(2k+2)
2k+1 (�r × n)

S = 2

3c4k+7
G

(2k+1)
2k+1 D

(2k+2)
2k+1 . (5.6)

The distribution of the radial energy flux on the sphere of radius
r is given by

Sr = c

4π
( �E × �H)r = sin2 θ

4πc4k+7r2
D2k+2

2k+1G
2k+1
2k+1.
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The total energy flux through this sphere is

r2
∫

Sr d1 = 2

3c4k+7
D2k+2

2k+1G
2k+1
2k+1.

The interaction of the odd toroidal source with the external
EMF is given by

U = −f2k+1

c

∫
dV �Aext curl2k+2(�nδ3(�r − �rs))

= (−1)k+1 f2k+1

c2k+2
(�n �E(2k+1)

ext ). (5.7)

Again, the external electric field is taken at the position of a
point-like toroidal source.

5.3. Short resumé of this section

We see that there are two branches of toroidal point-like
currents generating essentially different electromagnetic fields.
A representative of the first branch is the usual magnetic dipole.
The electromagnetic field of the kth member of this family
reduces to that of the circular current if the time dependences
of these currents are properly adjusted

f
(2k)
2k = (−1)kf0(t)/c

2k (k � 0). (5.8)

We remember that the lower index of the f functions selects
a particular member of the first branch, while the upper one
means the time derivative.

The representative of the second branch is the elementary
TS. Again, the electromagnetic fields of this family are the
same if the time dependences of currents are properly adjusted

f
(2k)
2k+1 = (−1)kf1(t)/c

2k (k � 0). (5.9)

From the equations defining the energy flux it follows that for
high frequencies, the toroidal emitters of the higher order are
more effective (as the time derivatives of the higher orders
contribute to the energy flux). They may be used in the same
way as usual frequency modulation transmitters. Namely, the
EMF of high frequency carries the energy. It is modulated
by the low-frequency EMF carrying the information. The
resulting signal is decoded in the receiver, its high frequency
is removed, while its low-frequency part comes to our ears.

From the classical electrodynamics it is known [15, 17]
that there are two types of radiation. For the multipole radiation
of magnetic type �r �E = 0 and �r �H �= 0, while for radiation
of the electric type should be �r �H = 0 and �r �E �= 0. It
follows from (5.4) that �r �E2k = 0 and �r �H2k �= 0. Thus,
radiation fields of the time-dependent currents flowing in a
circular turn and in toroidal emitters of the even order are
of the magnetic type. It follows from (5.5) that �r �H2k = 0
and �r �E2k �= 0. Correspondingly, radiation fields of the time-
dependent currents flowing in a toroidal coil and in toroidal
emitters of the odd order are of the electric type.

5.4. Historical remarks to section 5

EMFs (5.4) and (5.6) of elementary toroidal sources were
obtained in [39]. Their interactions with an external EMF
are given here for the first time.

6. The Lorentz and Feld–Tai lemmas

6.1. Standard derivation of the Lorentz lemma

We write out Maxwell’s equations for two current sources �j1

and �j2:

curl �E1 = −1

c
�̇H 1 curl �H1 = 1

c
�̇E1 +

4π

c
�j1

curl �E2 = −1

c
�̇H 2 curl �H2 = 1

c
�̇E2 +

4π

c
�j2. (6.1)

From this one easily obtains

div( �E1 × �H2) = �H2 curl �E1 − �E1 curl �E2

= − 1

c
�H2 �̇H 1 − 1

c
�E1 �̇E2 − 4π

c
�j2 �E1

div( �E2 × �H1) = �H2 curl �E1 − �E1 curl �E2

= − 1

c
�H1 �̇H 2 − 1

c
�E2 �̇E1 − 4π

c
�j1 �E2.

Subtracting these equations from each other, one obtains

div( �E1 × �H2 − �E2 × �H1) = 1

c
( �H1 �̇H 2 − �H2 �̇H 1)

−1

c
( �E1 �̇E2 − �E2 �̇E1) +

4π

c
( �j1 �E2 − �j1 �E2). (6.2)

When the time dependence of the field strengths is given by
exp(iωt), i.e.

�E1 = exp(iωt) �E0
1

�E2 = exp(iωt) �E0
2

�H1 = exp(iωt) �H 0
1

�H2 = exp(iωt) �H 0
2 (6.3)

then
�E1 �̇E2 = �E2 �̇E1 �H1 �̇H 2 = �H2 �̇H 1 (6.4)

and

div( �E1 × �H2 − �E2 × �H1) = 4π

c
( �j1 �E2 − �j1 �E2).

Integrate this relation over the sphere of the radiusR0 and apply
the Gauss theorem

R2
0

∫
( �E1 × �H2 − �E2 × �H1)r d1 = 4π

c

∫
( �j1 �E2 − �j1 �E2) dV.

(6.5)
For R0 → ∞, the left-hand side (LHS) of this equation
disappears and one obtains the famous Lorentz lemma

E12 = E21 (6.6)

where we put E12 = ∫ �j1 �E2 dV and E21 = ∫ �j2 �E1 dV.

6.2. The Feld–Tai lemma

The Feld–Tai lemma states that

H12 = H21 (6.7)

where H12 = ∫ �j1 �H2 dV and H21 = ∫ �j2 �H1 dV . It is proved
along the same lines as the Lorentz lemma. From (6.1) one
easily obtains

div( �H1 × �H2) = 1

c
( �H2 �̇E1 − �H1 �̇E2) + �j1 �H2 − �j1 �H2
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div( �E1 × �E2) = 1

c
( �E1 �̇H2 − �E2 �̇H1). (6.8)

Subtracting these equations from each other, one obtains

div( �E1 × �E2 − �H1 × �H2) = 1

c
( �E1 �̇H2 − �E2 �̇H1)

−1

c
( �H2 �̇E1 − �H1 �̇E2) − �j1 �H2 + �j2 �H1. (6.9)

If the time dependences of �E and �H are exp(iωt), then the first
two terms in the right-hand side (RHS) of (6.9) cancel each
other. Integrating the remaining ones over the whole volume,
one obtains

r2
∫

d1( �E1 × �E2 − �H1 × �H2)r =
∫

dV (−�j1 �H2 + �j2 �H1).

(6.10)
Since �E = �H × �n and �n = �r/r on the sphere of infinite radius,
the LHS of (6.10) disappears and one obtains the Feld–Tai
lemma (6.7).

6.3. Lorentz and Feld–Tai lemmas for real time dependences

The crucial point in obtaining (6.6) and (6.7) is (6.3). However,
the real current densities should be real. The possibility of
operating with complex quantities like

exp(iωt) �j exp(iωt) �E exp(iωt) �H
is valid as far as we deal with the quantities linear in field
strengths. For example, if the actual dependence of the
current density is cosωt , then we may solve Maxwell’s
equations with exp(iωt) �j , exp(iωt) �E and exp(iωt) �H and at
the end of calculations take the real parts of these quantities.
However, one should be very careful in dealing with quadratic
combinations such as (6.2) and (6.9). To avoid mistakes
one should first take real parts of the EMF strengths and
substitute them into quadratic combinations of the field
strengths. Consider the two equalities, (6.4), obtained under
assumption (6.3). Equations (3.9), (3.23) and (4.4) show that
actual field strengths contain both cosωt and sinωt

�E1 = cosωt �Ec
1 + sinωt �Es

1
�E2 = cosωt �Ec

2 + sinωt �Es
2

�H1 = cosωt �Hc
1 + sinωt �Hs

1
�H2 = cosωt �Hc

2 + sinωt �Hs
2 .

(6.11)
Substituting (6.11) into (6.4), we find that (6.4) are satisfied if

�Ec
1

�Es
2 = �Es

1
�Ec

2
�Hc

1
�Hs

2 = �Hs
1

�Hc
2 . (6.12)

It is not evident that these equations are fulfilled for the real time
dependences, cosωt and sinωt . We show below (section 6.5)
that they are not satisfied even for the simplest of EMF sources.

6.4. The Lorentz and Feld–Tai lemmas for elementary
electromagnetic sources

We apply now the Lorentz and Feld–Tai lemmas to the
simplest electromagnetic sources. The general conditions for
the validity and violation of these lemmas will be given in
section 7.3. The verification of the Lorentz lemma validity
for particular sources is needed because the RHS and LHS
of this lemma are the experimentally observed voltages (see
section 7.3.3 for details) induced in these particular sources.
Their deviation from the theoretical values testify to the
possible violation of reciprocity (see section 7.4).

6.4.1. Interacting electric dipole and current loop.
Equations (3.16) and (3.17) define the current density and EMF
strengths of the current loop, respectively. Correspondingly,
equations (4.1) and (4.2) define the same quantities for the
electric dipole. Combining them, we evaluate the integrals
entering into the Lorentz and Feld–Tai lemmas:

ELd = fL

∫
curl(�nLδ3(�r − �rL)) �Ed dV

= − 1

c
fL�nL

∫
δ3(�r − �rL) �̇Hd dV

= 1

c3R2
dL

fL(t)( �RLd(�nd × �nL))D̈d

EdL = 1

c3R2
dL

ḟd(t)( �RdL(�nL × �nd))ḊL

HLd = − 1

c3RdL

fL(t)

×
[
(�nd �nL)Ġd − 1

R2
dL

(�nd �RdL)(�nL �RdL)Ḟd

]

HdL = − 1

c3RdL

ḟd(t)

×
[
(�nd �nL)GL − 1

R2
dL

(�nd �RdL)(�nL �RdL)FL

]
. (6.13)

Here �RLd = − �RdL = �rL−�rd ,DL = D(fL),Dd = D(fd), etc.
The functionsD,F andG are defined by (3.17). The argument
of f functions entering into D, F and G is t −RdL/c. We see
that

ELd = EdL and HLd = HdL (6.14)

for arbitrary fL = ḟd .

6.4.2. Interacting electric dipole and TS. Combining
equations (3.46) and (3.47) that define the current density and
EMF strengths of a TS and equations (4.1) and (4.2) that define
the same quantities for the electric dipole, we evaluate the
integrals entering into the Lorentz and Feld–Tai lemmas:

ET d = fT (t)

∫
curl(2)(�nT δ3(�r − �rT ) �Ed dV

= − 1

c2
fT (t) �̈Ed( �RTD)

= fT (t)

c4RdT

[
(�nT �nd)G̈d − 1

R2
dT

(�nd �RTd)(�nT �RTd)F̈d

]

EdT = ḟd (t)
1

c4RdT

×
[
(�nT �nd)ĠT − 1

R2
dT

(�nd �RTd)(�nT �RTd)ḞT

]

HT d = − 1

c2
fT (t)(�nT �̈Hd( �RTD)

= − 1

c4R2
T d

fT �RTd(�nd × �nT )D(3)
d

HdT = 1

c4R2
T d

ḟd(t) �RdT (�nd × �nT )D(2)
T . (6.15)

The dots above the field strengths denote time derivatives.
Again, we see that these integrals coincide for arbitrary
fT = ḟd .

550



EMFs for testing reciprocity-like theorems

6.4.3. Interacting current loop and TS. Finally, using
equations (3.16), (3,17), (3.46) and (3.47) we obtain for the
integrals entering into the Lorentz and Feld–Tai lemmas:

ELT = fL

∫
curl(�nLδ3(�r − �rL)) �ET (�r − �rT ) dV

= − 1

c
fL�nL

∫
δ3(�r − �rL) �̇HT (�r − �rT ) dV

= − 1

c5R2
LT

fL �RLT (�nT × �nL)D(3)
T

ET L = fT (t)

∫
curl(2)(�nT δ3(�r − �rT )) �EL(�r − �rL) dV

= − fT (t)
1

c2
�nT �̈EL( �RTL)

= − 1

c5R2
T L

fT (t)D
(3)
L

�RTL(�nL × �nT )

HLT = fL

∫
curl(�nLδ3(�r − �rL)) �HT (�r − �rT ) dV

= 1

c
fl �nL �̇ET ( �RLT )

= 1

c5RLT

fL

[
(�nL�nT )G̈T − 1

R2
dT

(�nL �RLT )(�nT �RLT )F̈T

]

HT L = fT

∫
curl(2)(�nT δ3(�r − �rT )) �HL dV

= − fT
1

c2
�nT

∫
δ3(�r − �rT ) �̈HL(�r − �RL) dV

= − fT

c2
�nT �̈H( �RTL)

= fT

c5RTL

[
(�nL�nT )G̈L − 1

R2
dT

(�nL �RLT )(�nT �RLT )F̈L

]
.

(6.16)

We see that these integrals coincide for arbitrary fT = fL.

6.5. The Lorentz and Feld–Tai lemmas may be fulfilled even
when condition (6.4), ensuring their validity, is violated

We analyse the conditions (6.4) and (6.12) using the interacting
current loop and TS as an example. As we have seen, the
equalities

ELT = ET L and HLT = HT L

are satisfied if fT = fL. However, it is easy to check that
the conditions, (6.4) and (6.12), under which the Lorentz and
Feld–Tai lemmas were obtained are not satisfied for arbitrary
fT = fL. More accurately, (6.4) and (6.12) are valid if the
time dependences fT and fL are of the following specific
form: fT ∼ exp(iωt) and fL ∼ exp(iωt). But how to
reconcile the violation of (6.4) and (6.12) with the fulfillment
of (6.6) and (6.7) proved in a previous section? The answer
is that although the left- and right-hand sides of (6.4) do not
coincide for interacting current loop and TS with arbitrary
time dependence, space integrals from both sides of (6.4) do
coincide. This, in turn, means that the Lorentz and Feld–Tai
lemmas have a greater range of applicability than suggested up
to now. The same conclusions are valid for the interaction of
an electric dipole with the current loop and with the TS. The
fact that the Lorentz lemma (6.6) may be fulfilled due to the
equalities of the space integrals from (6.4), not to (6.4) itself,
was earlier recognized by Ginzburg [43].

6.6. Historical remarks to section 6

The standard derivation of the Lorentz lemma may be found
in many textbooks (see, e.g., [44–46]). The derivation of the
Feld–Tai lemma is available only in journal papers [11–13].
The mutual interaction of a point-like electric dipole, current
loop and TS is given here for the first time.

7. Alternative proof of the Lorentz and Feld–Tai
lemmas

7.1. Digression on the energy exchange

At first we consider a simpler case, corresponding to the
energy exchange between two sources of electromagnetic
energy. The energy transmitted from one charge–current
source ρ2(�r, t), �j2(�r, t) to the other source ρ1(�r, t), �j1(�r, t) is
given by

W12(t) =
∫ [

ρ1(�r1, t)�2(�r1, t) − 1

c
�j1(�r1, t) �A2(�r1, t)

]
dV1,

(7.1)
where �2(�r1, t) and �A2(�r1, t) are the scalar and electric
potentials induced by the charge–current density (ρ2, �j2) at
the position of the charge–current density (ρ1, �j1). They are
given by

�2(�r1, t) =
∫

1

R12
ρ2(�r2, τ )δ(τ − t + R12/c) dV2 dτ

�A2(�r1, t) = 1

c

∫
1

R12

�j2(�r2, τ )δ(τ − t +R12/c) dV2 dτ. (7.2)

HereR12 = |�r1−�r2| is the distance between the particular point
of sources 1 and 2. Substituting this into (7.1), one obtains

W12(t) =
∫ [

ρ1(�r1, t)ρ2(�r2, τ ) − 1

c2
�j1(�r1, t) �j2(�r2, τ )

]

× 1

R12
δ(τ − t + R12/c) dV1 dV2 dτ. (7.3)

In the same way,

W21(t) =
∫ [

ρ2(�r2, t)ρ1(�r1, τ ) − 1

c2
�j1(�r1, τ ) �j2(�r2, t)

]

× 1

R12
δ(τ − t + R12/c) dV1 dV2 dτ. (7.4)

We see, that in general W21(t) �= W12(t). Let now the time
dependences in ρ and �j be separated

ρ1(�r1, t1) = ρ1(t1)ρ1(�r1) ρ2(�r2, t2) = ρ2(t2)ρ2(�r2)

�j1(�r1, t1) = j1(t1) �j1(�r1) �j2(�r2, t2) = j2(t2) �j2(�r2).

(7.5)
Then,

W12(t)

=
∫ [

ρ1(t)ρ1(�r1)ρ2(�r2)ρ2(τ ) − 1

c2
j1(t) �j1(�r1) �j2(�r2)j2(τ )

]

× 1

R12
δ(τ − t + R12/c) dV1 dV2 dτ (7.6)

W21(t)

=
∫ [

ρ2(t)ρ2(�r2)ρ1(�r1)ρ1(τ ) − 1

c2
j2(t) �j2(�r2) �j1(�r1)j1(τ )

]

× 1

R12
δ(τ − t + R12/c) dV1 dV2 dτ. (7.7)
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It follows from this that W12 = W21 if the time dependences
of sources 1 and 2 coincide, i.e. when

ρ1(t) = ρ2(t) j1(t) = j2(t). (7.8)

That is, the action and reaction coincide if the time
dependences of sources 1 and 2 are separated and
synchronized.

The violation of action and reaction due to the retarded
nature of electromagnetic interaction was first recognized
by Lorentz in 1895 [47]. As far as we know, the best
exposition of these questions was given in Cullwick’s book [48]
where the explicit violation of action and reaction equality
was demonstrated for the interaction of a charge with a TS.
In a modern physical literature the violation of this equality
is considered as almost obvious. We quote, for example,
French [49]:

The equality of action and reaction has almost no
place in relativistic mechanics. It must be essentially
a statement about the forces acting on two bodies, as
a result of their mutual interaction at a given instant.
And, because of the relativity of simultaneity, this
phrase has no meaning.

The violation of action and reaction equality for the
interaction between the moving current loop and charge and
between two moving charges was noted by Jefimenko [50]
and Cornille [51], respectively. However, this violation
is not restricted only to the retardation effects. Even for
the interacting static metallic currents there are two known
interaction laws: Ampere’s law which agrees with Newton’s
third law (equality of action and reaction forces) and Lorentz’s
law which violates it (see, e.g., [52, 53]). However, if the
above currents are closed, the difference between these forces
disappears: both of them satisfy Newton’s third law [54] (from
our considerations it follows that in the non-static case the
violation of the action–reaction equality is possible even for
closed coils). As to experiments, some of them [55] support
only Ampere’s law of force, while others [56] give the same
result for both laws. These questions are beyond the present
consideration.

7.2. Concrete examples: the energy exchange between
elementary toroidal sources

Let us have two toroidal sources T S1 and T S2 in an arbitrary
order. Their interaction energy is

W = W12 + W21

whereW12 andW21 are the parts ofW localized at the positions
of T S1 and T S2. More accurately, W12 is the energy induced
by source 2 at the position of source 1; similarly for W21. They
are given by

W12 = −1

c

∫
�j1(�r − �r1) �A2(�r − �r2) dV (7.9)

and

W21 = −1

c

∫
�j2(�r − �r2) �A1(�r − �r1) dV (7.10)

respectively.

7.2.1. The interaction of even toroidal sources. Let �j1 and �j2

be both of even order

�j1 = f1(t) curl2l1+1[�n1δ
3(�r − �r1)]

�j2 = f2(t) curl2l2+1[�n2δ
3(�r − �r2)].

Then,

W12 = (−1)l1+1

c2l1+1
f1(t)�n1 · �H(2l1)

2 ( �R12)

W21 = (−1)l2+1

c2l2+1
f2(t)�n2 · �H(2l2)

1 ( �R21) (7.11)

where �H(2l1)
2 ( �R12) is the 2l1 time derivative of the magnetic

field produced by T S2 at the position of T S1 and �H(2l2)
1 ( �R21)

is the 2l2 time derivative of the magnetic field produced by
T S1 at the position of T S2. Substituting them from (5.4), one
obtains

W12 = f1
(−1)l1+l2+1

c2l1+2l2+4R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2)
2 − (�n1�n2)G

(2l1+2l2)
2

]

W21 = f2
(−1)l1+l2+1

c2l1+2l2+4R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2)
1 − (�n1�n2)G

(2l1+2l2)
1

]
(7.12)

(the upper indices at F and G functions denote the time
derivatives). We see that W12 = W21 for arbitrary f1 = f2.
Let f1 and f2 not depend on time. Then, W12 and W21 differ
from zero only for l1 = l2 = 0:

W12 = W21 = − f1f2

c2R3
12

[
3

1

R2
12

(�n1 �R12)(�n2 �R12) − (�n1�n2)

]

which coincides with interaction of two magnetic dipoles.

7.2.2. The interaction of odd toroidal sources. Let �j1 and �j2

both be of odd order.

�j1 = f2l1+1(t) curl2l1+2[�n1δ
3(�r − �r1)]

�j2 = f2l2+1(t) curl2l2+2[�n2δ
3(�r − �r2)].

Then

W12 = (−1)l1+1

c2l1+1
f1(t)�n1 · �E(2l1+1)

2 ( �R12)

W21 = (−1)l2+1

c2l2+1
f2(t)�n2 · �E(2l2+1)

1 ( �R21) (7.13)

where �E(2l1+1)
2 ( �R12) is the 2l1 + 1 time derivative of the electric

field induced by T S2 at the position of T S1 and �E(2l2+1)
1 ( �R21)

is the 2l2 + 1 time derivative of the electric field induced by
T S1 at the position of T S2. Substituting them from (5.5), we
obtain

W12 = f1
(−1)l1+l2

c2l1+2l2+6R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2+2)
2 − (�n1�n2)G

(2l1+2l2+2)
2

]
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W21 = f2
(−1)l1+l2

c2l1+2l2+6R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2+2)
1 − (�n1�n2)G

(2l1+2l2+2)
1

]
.

(7.14)

Again, we see that W12 = W21 for arbitrary f1 = f2. Let f1

andf2 not depend on time. Then,W12 = W21 = 0. This means
that static toroidal sources of an odd order (and, in particular,
usual static TSs) do not interact.

It follows from (7.12) and (7.14) that the interaction energy
between toroidal sources of the same order vanishes when the
two following conditions are fulfilled simultaneously.

(i) The symmetry axes of toroidal sources are mutually
orthogonal.

(ii) The symmetry axes of toroidal sources are perpendicular
to the vector �R12 going from T S1 to, T S2.

In particular, this is valid for two interacting current loops or
TSs.

7.2.3. The interaction of even and odd toroidal sources. Let
one of the currents be of the even order and the other of the
odd one:

�j1 = f1(t) curl2l1+1[�n1δ
3(�r − �r1)]

�j2 = f2(t) curl2l2+2[�n2δ
3(�r − �r2)].

Then,

W12 = (−1)l1+1

c2l1+1
f1(t)�n1 · �H(2l1)

2 ( �R12)

W21 = (−1)l2+1

c2l2+2
f2(t)�n2 · �E(2l2+1)

1 ( �R21). (7.15)

We observe a curious fact: T S1 interacts with the time
derivatives of the magnetic field induced by T S2 while T S2

interacts with the time derivatives of the electric field induced
by T S1 (by ‘interacts with time derivative’ we mean that
the time derivative of the corresponding order enters into the
interaction energy). Substitution of �E1 from (5.4) and �H2 from
(5.5) gives

W12 = f1
(−1)l1+l2+1

c2l1+2l2+5

1

R2
12

�n1( �R12 × n2)D
(2l1+2l2+2)
2

W21 = f2
(−1)l1+l2+1

c2l1+2l2+5

1

R2
12

�n2( �R21 × n1)D
(2l1+2l2+2)
1 . (7.16)

Again, we observe thatW12 = W21 for arbitraryf1 = f2. From
this one can see at once the violation of the action–reaction
equality for f1 �= f2. Take, for example, the last equation. Let
f1 and f2 depend and not depend on time, respectively. Then,
W12 = 0 and W21 �= 0. This means that T S1 acts on T S2

while T S2 does not act on T S1. It follows from (7.16) that the
interaction energy between toroidal sources of even and odd
orders is zero if one of the following two conditions is fulfilled.

(i) When the symmetry axes of T S1 and T S2 are parallel.
(ii) When at least one of the two symmetry axes (T S1 or T S2)

is parallel to the vector �R12 going from T S1 to T S2.

In particular, this is valid for the interaction of a current loop
with a TS.

7.2.4. Numerical estimations. To explicitly see at what level
the equality of action and reaction is violated, consider an
interacting current loop and TS with a constant current in its
winding. Since, there is no EMF outside such a TS it does not
act on the current loop. On the other hand, the action of the
current loop on the TS is given by (7.16) where one should put
l1 = l2 = 0. Then,

WLT = 0 WTL = −fT
1

c5R2
T L

�RTL(�nL × �nT )D(2)
L .

Let fL periodically change with time. Then,

fL = πILd
2
L cosωt

DL = −πILd
2
Lω

(
sinωtr − 1

kr
cosωtr

)

D
(2)
L = −ω2DL k = ω

c
tr = t − RTL

c

WTL = −fT
πILd

2
L

c5R2
T L

�RTL(�nL × �nT )D(2)
L ω3

×
(

sinωtr − 1

kr
cosωtr

)
.

Now we choose fT . It is equal to πcgdT R
2/4, where g =

2NIT /c, N is a number of coils in a TS winding and IT is a
current in a particular coil. However, instead of a TS winding,
it is convenient to use a ferromagnetic ring magnetized in the
azimuthal direction (see the middle part of figure 3). These two
objects are completely equivalent as to their interaction with
an external EMF. The magnetic field inside a TS is given by
Hφ = g/ρ, where ρ is the cylindrical radius. If the major
radius dT of a TS is much larger than its minor radius R, we
may put Hφ = HT = g/dT and g = dT HT . Finally, for WTL,
we obtain

WTL = −π2ILHT d
2
Ld

2
T R

2

c5R2
T L

�RTL(�nL × �nT )D(2)
L ω3

×
(

sinωtr − 1

kr
cosωtr

)
.

Its maximal absolute value is

|WTL| = π2ILHT d
2
Ld

2
T R

2ω3/c5RTL.

This expression should be multiplied by the number, NL, of
the turns in a circular loop. The typical value of magnetic
field inside the ferromagnetic sample is about 1000 G. Let
NL = 1000, IL = 1 A, the dimensions of a current
loop and TS are of the order of few centimetres and the
distance between sources about 10 cm. In order that the
motion of the TS can be observed, the frequency should
be of the order few hertz (otherwise, positive and negative
values ofWTL compensate each other for the finite observation
time). For these parameters, WTL ∼ 10−32 ergs and the
corresponding force FTL ∼ WTL/RTL ∼ 10−33 dynes. Such
a small force could be hardly observed experimentally for
the realistic cosine or sine current dependences. Under the
influence of a force from a current loop, the TS begins to move.
The EMF strengths are non-zero outside the TS, when it moves
uniformly in a medium [57, 58], or when it is accelerated (both
in a medium and under vacuum [36]). The moving TS will act
on a current loop which, in turn, begins to move. However,
these, next-order effects, are beyond the present consideration.
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At first glance it seems that the violation of the action–
reaction equality testifies to the energy–momentum non-
conservation. Fortunately, this is not so. In fact, the energy–
momentum balance restores if one takes into account the
energy–momentum carried out by the radiated EMF.

7.3. Back to the Lorentz and Feld–Tai lemmas

7.3.1. Lorentz lemma. Proceeding in the same way as
for the interaction energies, we obtain for the integrals
E12 and E21 entering into the formulation of the Lorentz
lemma

E12 = −
∫
ρ̇1(�r1, t)ρ2(�r2, τ )δ(τ − t + R12/c)

1

R12
dV1 dV2 dτ

+
1

c2

∫
�j1(�r1, t) �j2(�r2, τ )δ̇(τ − t + R12/c)

1

R12
dV1 dV2 dτ

(7.17)

E21 = −
∫
ρ̇2(�r2, t)ρ1(�r1, τ )δ(τ − t + R12/c)

1

R12
dV1 dV2 dτ

+
1

c2

∫
�j2(�r2, t) �j1(�r1, τ )δ̇(τ − t + R12/c)

1

R12
dV1 dV2 dτ

(7.18)

where the dot above ρ denotes the derivative with respect
to (w.r.t.) t and the dot above the δ function denotes
the derivative w.r.t. its argument. Again we see that, in
general, E12(t) �= E21(t). Let now the time dependences
of ρ and �j be separated in the same way as in (7.5).
Then,

E12 = −
∫

ρ̇1(t)ρ1(�r1)ρ2(�r2)ρ2(τ )

× 1

R12
δ(τ − t + R12/c) dV1 dV2 dτ

+
1

c2

∫
j1(t) �j1(�r1) �j2(�r2)j2(τ )

× 1

R12
δ̇(τ − t + R12/c) dV1 dV2 dτ (7.19)

E21 = −
∫

ρ̇2(t)ρ2(�r2)ρ1(�r1)ρ1(τ )

× 1

R12
δ(τ − t + R12/c) dV1 dV2 dτ

+
1

c2

∫
j2(t) �j2(�r2) �j1(�r1)j1(τ )

× 1

R12
δ̇(τ − t + R12/c) dV1 dV2 dτ (7.20)

Similarly to the interaction energies, we see that E12(t) =
E21(t) for the arbitrary time dependences ρ1 and j1 coinciding
with ρ2 and j2, i.e. when conditions (7.5) and (7.8) are fulfilled.

7.3.2. Feld–Tai lemma. Direct evaluation of integrals
entering into the Feld–Tai lemma gives

H12 = εijk

∫
j1i (�r1, t)

∂A2k

∂x1j
dV1

= εijk

∫
j1i (�r1, t)j2k(�r2, τ )

∂

∂x1j

1

R12
δ

×
(
τ − t +

R12

c

)
dV1 dV2 dτ

H21 = εijk

∫
j2i (�r2, t)

∂A1k

∂x2j
dV2

= εijk

∫
j2i (�r2, t)j1k(�r1, τ )

∂

∂x2j

1

R12
δ

×
(
τ − t +

R12

c

)
dV1 dV2 dτ. (7.21)

Here εijk is the unit antisymmetrical tensor of the third rank.
When the time dependences in current densities are separated
( �j(r, t) = j (t) �j(r)), these equations are reduced to

H12 = εijkj1(t)

∫
j2(τ )j1i (�r1)j2k(�r2)

∂

∂x1j

1

R12
δ

×
(
τ − t +

R12

c

)
dV1 dV2 dτ

H21 = εijkj2(t)

∫
j1(τ )j2i (�r2)j1k(�r1)

∂

∂x2j

1

R12
δ

×
(
τ − t +

R12

c

)
dV1 dV2 dτ. (7.22)

Obviously
H12 = H21

when the arbitrary time dependences of sources 1 and 2
coincide (j1(t) = j2(t)).

7.3.3. The physical meaning of the Lorentz and Feld–Tai
lemma for the interacting current sources. We conclude:
the Lorentz and Feld–Tai lemmas are fulfilled when the two
following conditions are satisfied.

(i) Time dependences are separated from space variables in
the charge–current densities. This means that the time
dependence should be the same for all space points of a
particular source.

(ii) The separated time dependence is the same for sources 1
and 2.

The physical meaning of the Lorentz lemma is as
follows [9, 59]. The time-dependent magnetic flux penetrating
a particular turn of a winding creates an electric field directed
along this turn. Being summed, they give the potential
difference between the ends of the winding if it is not closed and
induce the current in the winding if it is closed. This voltage (or
current) can be measured. To obtain voltage, in E12 we omit
the time-dependent current force I1 (not the current density
�j1). Thus E12(t) so obtained gives the time-dependent voltage
induced in winding 1 by the time-dependent current flowing
in winding 2. Similarly, if in E21 we omit the time-dependent
current force I2, then E21(t) gives the time-dependent voltage
induced in winding 2 by the time-dependent current flowing in
winding 1. Thus E12 and E21 so obtained coincide if I1 = I2.
We observe that in the first case winding 1 is a receiver and
winding 2 is a transmitter. In the second case, the situation is
opposite. This means that an induced voltage is invariant under
the replacement of the detector and transmitter. We illustrate
this using a point-like TS and a current loop as an example.
Turning to (3.16) and (3.46), we observe that fT and fL in ET L
may be presented as

fT = πNIT dT R
2

2
f̃T fL = πILd

2
Lf̃L

554



EMFs for testing reciprocity-like theorems

where IT and IL are the current forces in a TS and current
loop, respectively, and f̃T and f̃L are their time dependences.
Omitting the factor IT f̃T , for the voltage induced in a TS we
obtain

VTL = −π2NdT R
2d2

L

2c5R2
T L

D(3)(ILf̃L).

In the same way, omitting the factor ILf̃L, for the voltage
induced in a current loop we obtain

VLT = −π2NdT R
2d2

L

2c5R2
T L

D(3)(IT f̃T ).

Indeed, we see that VTL = VLT if IT f̃T = ILf̃L, i.e. when the
time-dependent currents flowing in a current loop and toroidal
solenoid are the same.

For completeness, we write out, without derivation, the
left-hand (E12 = ∫

dV �j1(�r − �r1) �E2(�r − �r2) dV ) and right-
hand (E21 = ∫

dV �j2(�r − �r2) �E1(�r − �r1) dV ) sides, the Lorentz
lemma for the toroidal sources, the following.

(i) Both toroidal sources are of even order

E12 = f1
(−1)l1+l2+1

c2l1+2l2+4R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2+1)
2 − (�n1�n2)G

(2l1+2l2+1)
2

]

E21 = f2
(−1)l1+l2+1

c2l1+2l2+4R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2+1)
1 − (�n1�n2)G

(2l1+2l2+1)
1

]
.

(ii) Both toroidal sources are of odd order

E12 = f1
(−1)l1+l2

c2l1+2l2+6R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2+3)
2 − (�n1�n2)G

(2l1+2l2+3)
2

]

E21 = f2
(−1)l1+l2

c2l1+2l2+6R12

×
[

1

R2
12

(�n1 �R12)(�n2 �R12)F
(2l1+2l2+3)
1 − (�n1�n2)G

(2l1+2l2+3)
1

]
.

(iii) One of toroidal sources (source 1) is of even order
and the other (source 2) is of odd order

E12 = f1
(−1)l1+l2+1

c2l1+2l2+5

1

R2
12

�n1( �R12 × n2)D
(2l1+2l2+3)
2

E21 = f2
(−1)l1+l2+1

c2l1+2l2+5

1

R2
12

�n2( �R21 × n1)D
(2l1+2l2+3)
1 .

These quantities are proportional to the induced voltages and,
thus, have physical meaning. It follows from these equations
that the voltages induced in the toroidal sources of the same
order vanish when the two following conditions are fulfilled
simultaneously:

(i) the symmetry axes of toroidal sources are mutually
orthogonal;

(ii) the symmetry axes of toroidal sources are perpendicular
to the vector �R12 going from T S1 to T S2.

On the other hand, voltages induced in the toroidal sources of
opposite orders vanish if one of the two following conditions
is fulfilled:

(i) when the symmetry axes of T S1 and T S2 are parallel;
(ii) when at least one of two symmetry axes (T S1 or T S2) is

parallel to the vector �R12 going from T S1 to T S2.

These considerations may be useful when planning experi-
ments with reciprocity violation.

The physical meaning of the Feld–Tai lemma for
interacting current sources is not clear to us. A time-dependent
electric field penetrating a particular turn of a winding creates
the magnetic field directed along this turn. If free magnetic
charges existed, then integrals entering into the Feld–Tai
lemma (after omitting the corresponding factors as in the
Lorentz lemma) would give the magnetic voltage between
the ends of the winding (if it is not closed). Their equality
would give the symmetry between the transmitter and the
receiver. Since monopoles have not yet been found, this
interpretation of the Feld–Tai lemma has no relation to reality.
However, Lakhtakia [14] and Monzon [13], seem to have found
numerous applications of the Feld–Tai lemma.

7.3.4. Another viewpoint on the Lorentz and Feld–Tai lemmas.
In the Fourier representation ( �E(t) = ∫ �E(ω) exp(iωt) dω,
etc.) the curl parts of Maxwell equations look like

curl �E = −ik �H curl �H = ik �E +
4π

c
�j k = ω/c.

Then, the Lorentz and Feld–Tai lemmas are satisfied trivially.
For example, the proof of the Lorentz lemma without using the
Maxwell equations takes three lines

E12 =
∫

�j1(�r1) �E12(�r2) dV1

=
∫

�j1(�r1)[−�∇�12(�r1) − ik �A12(�r1)] dV1

= − iω
∫ [

ρ1(�r1)�12(�r1) +
1

c
�j1(�r1) �A12(�r1)

]
dV1

= − iω
∫ [

ρ1(�r1)ρ2(�r2) +
1

c2
�j1(�r1) �j2(�r2)

]

×exp(−ikR12)

R12
dV1 dV2

= E21.

Therefore, the Lorentz and Feld–Tai lemmas may be viewed
as integral relations between the Fourier transforms of the
current densities and field strengths. This, in its turn, may
be used to derive new identities. For example, multiplying E12

by exp(iωt) and integrating over ω, one gets∫
�j1(�r1, ω) �E12(�r1, ω) exp(iωt) dV1 dω

= 1

4π2

∫
�j1(�r1, t

′) �E12(�r1, t
′′)

× exp[iω(t − t ′ − t ′′)] dV1 dω dt ′ dt ′′

= 1

2π

∫
�j1(�r1, t

′) �E12(�r1, t
′′)δ(t − t ′ − t ′′) dV1 dt ′ dt ′′

= 1

2π

∫
�j1(�r1, t − t ′) �E12(�r1, t

′) dV1 dt ′. (7.23)
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Performing the same operation with E21 and equalizing the
result to (7.23), one arrives at∫

�j1(�r1, t − t ′) �E12(�r1, t
′) dV1 dt ′

=
∫

�j2(�r2, t − t ′) �E21(�r2, t
′) dV2 dt ′. (7.24)

This equation was obtained by Feld [60]. We make one further
step, excluding electric strengths. Then, the LHS of (7.24) is
reduced to

1

2π

∂

∂t

∫ [
ρ1(�r1, t − t ′)ρ2

(
�r2, t

′ − R12

c

)

+
1

c2
�j1(�r1, t − t ′) �j2

(
�r2, t

′ − R12

c

)]
1

R12
dt ′ dV1 dV2.

Therefore, the following equation should be satisfied:∫ [
ρ1(�r1, t − t ′)ρ2

(
�r2, t

′ − R12

c

)

+
1

c2
�j1(�r1, t − t ′) �j2

(
�r2, t

′ − R12

c

)]
1

R12
dt ′ dV1 dV2

=
∫ [

ρ2(�r2, t − t ′)ρ1

(
�r1, t

′ − R12

c

)

+
1

c2
�j2(�r2, t − t ′) �j1

(
�r1, t

′ − R12

c

)]
1

R12
dt ′ dV1 dV2.

(7.25)

Performing the same operation for the integrals entering into
the Feld–Tai lemma, one obtains∫

exp(iωt) �j1(�r1, ω) �H12(�r1, ω) dω dV1

= 1

2π

∫
�j1(�r1, t − t ′) �H12(�r1, t

′) dt ′ dV1

= − 1

2πc

∫
1

R12
curl �j1(�r1, t − t ′)

×�j2(�r2, t
′ − R12/c) dV1 dV2 dt ′.

Therefore, the following equalities should be fulfilled:∫
�j1(�r1, t − t ′) �H12(�r1, t

′) dt ′ dV1

=
∫

�j2(�r2, t − t ′) �H21(�r2, t
′) dt ′ dV2∫

1

R12
curl �j1(�r1, t − t ′) �j2(�r2, t

′ − R12/c) dV1 dV2 dt ′

=
∫

1

R12
curl �j2(�r2, t − t ′) �j1(�r1, t

′ − R12/c) dV1 dV2 dt ′.

(7.26)

It is important that equations (7.24)–(7.26), contrary to the
equations defining the Lorentz and Feld–Tai lemmas, are
satisfied for any charge–current density. No assumption on the
separation of the space and time dependences or the equality
of the time dependences for two interacting sources is needed.

As the author is not the specialist in the applied aspects of
reciprocity-like theorems, he cannot appreciate the meaning of
the results obtained. On the other hand, there are outstanding
experts in this field (A Lakhtakia, J C R Monzon and others).
It would be nice to hear their opinion on the treated questions.

7.4. Violation of the Lorentz and Feld–Tai lemmas

Now we analyse the assumption on the separability time and
spatial variables in charge–current densities. Take at first the
simple circular current loop. Since there are no other turns,
there are no resistive or capacity connections between them.
Therefore, the current is the same along the whole wire (due to
the continuity equation div �j = 0) and the time dependence is
clearly separated from the space variables. On the other hand,
consider the winding with many overlapping turns, for example
the TS. If the turns are close to each other, there is a finite
capacitance between them. For high frequencies the leakage
currents appear between particular turns and the current will
be changed along the wire. This does not have any relation
to the violation of the continuity equation div �j = 0, which
will be fulfilled due to the presence of other �j components
having a direction different from that of wire. Since the current
density changes along the wire, the time dependence is not now
separated. This should lead to the violation of the reciprocity
theorem. We conclude: the violation of the reciprocity is
possible for high frequencies and a large number of overlapping
coils.

In general, two windings with the same voltages at their
terminals do not satisfy the reciprocity theorem if the time
dependence is not separated in their charge-current densities
and if these charge-current densities are different. The
theoretical analysis of an experimental situation becomes
easier if one of the windings is chosen as simple as possible
(in particular, time dependence can be separated in its charge-
current density), while the time dependence of other charge-
current density should be non-separable. The measurement
process involves two stages:

(1) Apply time-dependent voltage to the terminals of the first
winding and measure an induced voltage at the terminals
of the second winding;

(2) Apply the same time-dependent voltage to the terminals
of the second winding and measure an induced voltage at
the terminals of the first winding.

These induced voltages do not coincide if the time
dependence in at least one of charge-current densities is not
separable (despite the equality of applied voltages at the
terminals of each winding).

At present we did not succeed in evaluating the explicit
form of the resulting current with a non-separable space–
time dependence (arising from the current leakages at high
frequencies) for the realistic winding. Instead, in the next
section, we consider the simplest charge–current density with
non-separable space–time dependence and prove the violation
of the Lorentz and Feld–Tai lemmas. We realize that this
example is slightly unrealistic. It is needed to support the
conclusion on the possible violation of reciprocity following
from the alternative proof of the Lorentz and Feld–Tai lemmas
given in section 7.3.

7.4.1. Concrete example of the reciprocity violation:
interacting electric oscillator and current loop. We
demonstrate the violation of the Lorentz and Feld–Tai lemmas
using the interacting electric oscillator and an infinitesimal
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current loop as an example. We consider the electric oscillator
oriented along the z axis:

ρosc = eδ(x)δ(y)δ(z − a cosωt)

joscz = −eaω sinωtδ(x)δ(y)δ(z − a cosωt). (7.27)

Let the origin of a current loop br represented by the vector �rL
and let �nL be a vector normal to its plane. Then, according to
(3.16)

�jL = fL(t) curl(�nLδ3(�r − �rL)). (7.28)

We first evaluate the electromagnetic potentials of an electric
oscillator. They are obtained from the general expressions

�osc(�r, t) =
∫

1

R
ρosc(�r ′, t ′)δ

(
t ′ − t +

R

c

)
dV ′ dt ′

Aosc
z (�r, t) =

∫
1

R
joscz (�r ′, t ′)δ

(
t ′ − t +

R

c

)
dV ′ dt ′

R = |�r − �r ′|
by substituting charge–current densities (7.27) into them and
performing integration over space variables. This gives

�osc(�r, t) = e

∫
1

R
δ

(
t ′ − t +

R

c

)
dt ′

Aosc
z (�r, t) = −eβ0

∫
sinωt ′

R
δ

(
t ′ − t +

R

c

)
dt ′.

Here β0 = aω/c, R = [ρ2 + (z − a cosωt ′)2]1/2 and ρ2 =
x2 + y2. Integrating over t ′ one obtains

�osc(�r, t) = e

Q1
Aosc

z (�r, t) = −eβ0 sinωt1
Q1

(7.29)

where Q1 = R1 + β0(z − a cosωt1) sinωt1 and R1 = [x2 +
y2 + (z − a cosωt1)2]1/2. The retarded time t1 is found from
the equation

c(t − t1) = R1. (7.30)

Since the charge velocity β = −β0 sinωt is less than one,
there is only one root of (7.30).

When obtaining (7.29), the following property of the delta
function was used: δ(f (x)) = δ(x − x1)/|f ′(x1)|, where
x1 is the root of f (x). For the treated case it looks like
δ(t ′ − t + R/c) = δ(t ′ − t1)/[1 + β0(z − a cosωt1)/R1]. The
EMF strengths are given by

Eρ = −∂�

∂ρ
Ez = −∂�

∂z
− ∂Az

c∂t
Hφ = −∂Az

∂ρ
.

When performing differentiation, one should take into account
the fact that t1 depends on the space–time coordinates of the
observation point. The corresponding derivatives are given by

dt1
dt

= R1

Q1

dt1
dρ

= − ρ

cQ1

dt1
dz

= −z − a cosωt1
Q1

.

Then,

Eo
ρ = eρ

Q3
1

[
1 − β2

0 sin2 ωt1 − β2
0 cosωt1

( z

a
− cosωt1

)]

Eo
z = ea

Q3
1

[
(1 − β2

0 sin2 ωt1)

(
z

a
− cosωt1 − β0

R1

a
sinωt1

)

+ β2
0
ρ2

a2
cosωt1

]

Ho
φ = −eβ0

Q3
1

[
β0

R1

a
cosωt1 + (1 − β2

0 sin2 ωt1) sinωt1

]
.

(7.31)

We need also the EMF strengths of the current loop. According
to (3.17), they are given by

�EL = 1

c3r2
L

ḊL((�r − �rL) × �nL)

�HL = 1

c3rL

[
((�r − �rL)�nL)

r2
L

(�r − �rL)FL − �nLGL

]
(7.32)

where rL = |�r − �rL| and the argument of the DL,FL and GL

functions (see (3.18) for their definition) is t − rL/c.

7.4.2. Lorentz lemma. Direct evaluation of the integrals
entering into the Lorentz lemma gives

E(osc, L) =
∫

�josc �EL dV = eaω sinωt

c3R2
L

ḊL[xLn
y

L − yLn
x
L]

where xL, yL and zL define the position of the current loop;
RL = [x2

L + y2
L + (zL − a cosωt)2]1/2; the argument of the DL

function is t − RL/c. Further,

E(L, osc) =
∫

�jL �Eosc dV

= eβ0fL(t)[xLn
y

L − yLn
x
L]

R1L

cQ1L

d

dt1

×
{

1

Q3
1L

[
β0

R1L

a
cosωt1 + (1 − β2

0 sin2 ωt1) sinωt1

]}
.

Here R1L = [x2
L + y2

L + (zL − a cosωt1)2]1/2, Q1L = R1L +
β0(zL − a cosωt1) sinωt1 and t1 is found from the equation:
t − t1 = R1L/c. Now we choose the time dependence of the
charge–current loop to be the same as that of electric oscillator:
fL(t) = f0 sinωt . Then, equalizing E(L, osc) and E(osc, L),
one obtains

− k2

R2
L

(
sinωt − 1

kRL

cosωt

)
= R1L

cQ1L

d

dt1

×
{

1

Q3
1L

[
β0

R1L

a
cosωt1 + (1 − β2

0 sin2 ωt1) sinωt1

]}
.

Here k = ω/c. This equality is not satisfied, and therefore
the Lorentz lemma is not fulfilled for the interacting electric
oscillator and current loop. Experimentally, this means that
the non-coincidence of the voltages induced and the absence of
the receiver–transmitter symmetry (see section 7.3.3). Instead,
the more complicated relations (7.24) and (7.25) should be
fulfilled. Their physical meaning is not so clear as that of the
Lorentz lemma.
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7.4.3. Feld–Tai lemma. For the integrals entering into Feld–
Tai lemma one gets

H(osc, L) = −eaω sinωt

c3RL

{
[(a cosωt − zL)n

z
L − xLn

x
L

− yLn
y

L]
a cosωt − zL

R2
L

FL − nzLGL

}

H(L, osc) = efL(t)

c

R1L

Q1L

d

dt1

{
(xLn

x
L + yLn

y

L)

×
[
1 − β2

0 sin2 ωt1 − β2
0 cosωt1

(z0

a
− cosωt1

)]
+anzL

[
(1−β2

0 sin2 ωt1)

(
zl

a
− cosωt1−β0

R1L

a
sinωt1

)

+ β2
0
ρ2
L

a2
cosωt1

]}
ρ2
L = x2

L + y2
L.

Putting fL(t) = f0 sinωt we find that the Feld–Tai lemma
cannot be satisfied for the interacting electric oscillator and
current loop.

It should be mentioned that the more general reciprocity
relations formulated in section 7.3.4 are fulfilled for arbitrary
time dependences and, in particular, for the interacting electric
oscillator and current loop.

7.5. Historical remarks to section 7

Conditions (7.5) and (7.8), ensuring the validity of action
and reaction and the fulfillment of the Lorentz and Feld–Tai
lemmas for arbitrary interacting electromagnetic sources, are
new. The same is valid for the interaction laws (7.12), (7.14)
and (7.16) between the even and odd toroidal sources and for
the generalizations (7.25) and (7.26) of the Lorentz and Feld–
Tai lemmas. The conditions under which the Lorentz and
Feld–Tai lemmas can be violated and the concrete example
demonstrating this fact have never before been obtained.

8. Discussion and Conclusion

Recently, we were aware of experiments with toroidal coils
of higher orders (see section 5). In these experiments,
the non-coincidence of the voltages induced in the toroidal
coils (i.e. the violation of the transmitter–receiver symmetry
mentioned in section 7.3.3) was observed for large frequencies.
The reciprocity theorem seems to be so well established that the
scientists performing these experiments did not dare to attribute
this non-coincidence to its violation. However, the present
consideration shows that this violation is, indeed, possible. It
should be mentioned that the violation of reciprocity will lead
to serious consequences in both theoretical and experimental
electromagnetism. According to [13]:

One of the basic and most important theorems of
electromagnetic theory is the so-called reciprocity
theorem. Its importance is evident from its wide
range of applicability in all branches of electrical
engineering.

We briefly enumerate the main results obtained.
(1) We obtained expressions describing the EMFs of a

current loop, TS and electric dipole with a periodic current

in their windings. These expressions are valid for arbitrary
distances and frequencies. We did not find them in the available
textbooks and journal papers (only long-wave limit expressions
were found in the literature). Various particular cases are
considered and conditions for their validity are given. The
interaction of these sources with external EMF and between
themselves is found.

(2) We applied the reciprocity theorem (Lorentz and
Feld–Tai lemmas) to the EMFs of time-dependent electric
dipole, current loop, TS and higher-order EMF sources. It is
shown that the proportionality of time derivatives of the EMF
strengths to the EMF strengths themselves is not a necessary
condition for the fulfillment of the reciprocity theorem.

(3) An alternative proof of the reciprocity theorem is given.
It is shown that the reciprocity theorem works for more general
time dependences than previously suggested. The conditions
for its validity are reduced to the following two:

(i) the time dependence should be separated from the spatial
dependence in the charge–current densities of interacting
sources;

(ii) the time dependences of these sources should be the same.

These conditions are essentially the same as those needed for
the equality of action and reaction between two interacting
electromagnetic sources. The estimation of action–reaction
violation for an interacting current loop and TS is given.

(4) Conditions under which the reciprocity theorem can be
violated are given. A concrete example is presented for which
the reciprocity theorem is manifestly violated.

(5) New reciprocity-like theorems valid for arbitrary
space–time dependences (and, in particular, for those discussed
in the previous item) of the interacting current densities are
obtained. However, their physical meaning is not very clear.
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Appendix

We begin with the well known relation (see, e.g., [20])

cos νθJν(k
√
d2 + R2 − 2dR cosψ)

=
∞∑

−∞
Jm(kR)Jm+ν(kd) cosmψ R < d (A.1)

where tan θ = R sinψ/(d − R cosψ). For R � d, the angle
θ may be put to zero. Then,

Jν(k
√
d2 + R2 − 2dR cosψ) ≈

∞∑
−∞

Jm(kR)Jm+ν(kd) cosmψ

(A.2)
R � d.

We cannot put R = 0 in the RHS of this equation, since for
high frequencies kR may be large. Furthermore,

j2n+1(ky) =
√

π

2ky
J2n+3/2(ky) ≈

√
π

2kd
J2n+3/2(ky)
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where y = (d2 + R2 + 2dR cosψ)1/2 is the same as in (3.22).
We changedy byd outside the Bessel function. This is possible
since R � d. Then, according to (A.1),

j2n+1(ky) ≈
∞∑

−∞
(−1)mJm(kR)J2n+1+m(kd) cosmψ (A.3)

R � d.

Therefore, the integral defining D2n+1 is given by∫ 2π

0
j2n+1(ky) sin2 ψ dψ

= π

{
J0(kR)j2n+1(kd)−1

2
J2(kR)[j2n+3(kd)+j2n−1(kd)]

}
.

(A.4)

This exactly coincides with (3.29).
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