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1. Introduction 

 

I have known for some years that it is possible to load the spinning or orbital electrons 

responsible for permanent magnetism so that they deliver energy.  This is easily demonstrated 

when considering the summated magnetic fields from a magnet and from a coil wound around 

the magnet.  It can be shown that some of the magnetic field energy comes from the magnet 

and not from the coil, when the coil is adding energy the changing flux draws energy from the 

atomic spins within the magnet.  Until now I have not found a method of using this loading 

effect to get power delivered to a load resistor, it has always appeared as field energy that gets 

clawed back on a later part of the cycle.  However having recently been driven to analyse a 

PM generator in the magnetic domain, and not in the electric domain, the conditions for 

making the atomic spins supply power to a load have been revealed.  This paper deals with 

that perspective and could open the door to overunity generators that extract some of their 

energy from the quantum domain that keeps the atomic spins going. 

 

2. Magnetic Domain Analysis 

 

Here we describe a method for the dynamic analysis of systems in the magnetic domain.  In a 

manner it is the inside-out version of the electrical equivalent circuit.  The magnetic “circuit” 

is modeled along well-known lines where magnetic flux is treated like current and magnetic 

reluctance like resistance.  However it goes beyond the simple “magnetic Ohm’s Law” by 

introducing other magnetically reactive components that represent the outside electrical 

world.  This allows a time or frequency domain analysis to be carried out on the magnetic 

flux, from which the electrical characteristics automatically follow.  Such a procedure gives a 

deeper insight into the magnetic behaviour, and enables more accurate modeling of unusual 

systems or those working outside their normal envelope. 
 

“Magnetic Ohm’s law” will be found in any good treatise on magnetism, and is repeated here 

for completeness and as a starting point.  Magnetic reluctance RM is treated like electrical 

resistance R, magnetic flux Φ like current I, and mmf U like voltage V.  Hence the mmf drop 

across a length of core material of reluctance RM is given by 

MRU Φ=          (1) 

which is the magnetic Ohm’s Law equivalent of V=IR.  And just as the resistance of a rod of 

resistive material is given by R=l/σΑ where l is the length, A the cross sectional area and σ the 

conductance, so the reluctance of a rod of ferromagnetic material is  
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where µ is the absolute permeability.  Treating sections of the magnetic circuit in this way 

enables the reluctance of a core made up of different cross sections to be determined.  Also 

the distribution of flux among different branches of a complex core arrangement can be 

determined by solving as a network of reluctances.  Air paths also have reluctance, and when 

these are confined to small gaps the formula RM =l/ µ0Α can be used.  However when flux 

spreads out within air it requires other methods such as those used for establishing 

capacitance between bodies.  Generally the reluctances of air gaps and of permanent magnets 

are so high that, similar to electric circuits that have wires of high where their resistance is 

considered to be zero, magnetic circuits can have ferromagnetic core sections whose 

permeability is so high that their reluctance can also be taken to be zero.   

 

 



For a coil the magnetic reluctance plays its part in the electrical inductance as 
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where N is the number of turns and RM is total reluctance of the closed air paths through and 

around the coil.  When the coil carries a current I its mmf is U=NI ampere turns, hence 

“magnetic Ohm’s Law” gives the self-flux through the coil as Φself=NI/ RM.  Thus self-flux 

Φself=LI/N (not to be confused with flux linkage which is often loosely called flux and given 

as Φself=LI).  In a classic generator the self-flux from load current through the coil is known to 

distort the flux pattern through which the coil is moving, leading to armature reaction.  This 

requires the brushes on the commutator to be moved to a new position aligned with the 

distorted flux in order to achieve maximum performance.  This is generally a movement of a 

few degrees, anything greater is not normally considered as it is assumed to be deleterious to 

the generation process.  This conception is shown to be wrong in the full analysis carried out 

later in this paper which shows that under certain conditions it shifts the phase of the load 

current from an armature position where the load current creates drag torque to one where it 

doesn’t. 

 

Permanent magnets can be modeled from their Amperian Surface Current equivalent which 

then appears as a mmf generator whose value is given by 
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where BREM is the remanence and l is the length of the magnet. This must be put in series with 

a reluctance RMAG which is the reluctance of the air space occupied by the magnet.  That air 

space represents the large inter-atomic space that separates the individual electron spins which 

supply the magnetism, and the justification for this model can be found in the well known 

method for determining the magnetic load line that involves the reluctance of that air space. 

 

If we now turn to coils through which flux is changing, the output voltage is NdΦ/dt which 

drives a current I through the load resistor RLOAD.  The back mmf induced into the magnetic 

circuit is thus 
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We can view the term in parentheses as a “magnetic inductance” LM of value 
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 since U=-LMdΦ/dt has exactly the same form as V=-LdI/dt. 

 

More details on dynamic analysis can be found in my paper “Analyzing Transformers in the 

Magnetic Domain”. 

 

3. A PM Generator. 

 

Figure 1 shows a PM generator which has an idealized magnetic switch connecting a 

magnetic path from a magnet to a coil across which is connected a load resistor RL.  Clearly 

turning that switch sequentially on and off will cause flux through the coil to rise and fall and 

that will induce voltage into the coil hence power into the load.  Figure 2 is the magnetic 

domain circuit showing the magnetic switch as having a value of shunt reluctance when open 

in the same way that an electric switch would have shunt capacitance. 

 

 



 

Figure 1.  A PM Generator using a magnetic switch 

 

Figure 2.  Magnetic domain circuit 

 

Analysis of this magnetic circuit is quite trivial and will not be given here, suffice it to say 

that if the magnetic L/R time-constant is small compared to the time between switch 

operations the flux waveform is a square-wave with rise and fall times determined by that 

time constant.  Note that only during those flux rise and falls is voltage induced into the coil 

to deliver power to the load in the form of a train of spikes.  If the time constant is long the 

flux waveform becomes a triangular wave, hence the induced coil voltage becomes a square 

wave with power delivered almost continually.  

  

One viable type of magnetic switch uses movement of ferromagnetic components relative to 

each other, so the switching action is not instantaneous but rather the gradual reduction of the 

shunt reluctance from a high value to a low value, hence figure 3 is a more realistic set-up.  

Here a ferromagnetic slug within a non-ferromagnetic rotor disc moves through an air gap 

thus changing its reluctance. 

 

Figure 3.  Variable reluctance generator 
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Figure 4 shows the magnetic domain circuit where the switch has been replaced by a variable 

reluctance. 

 

Figure 4.  Magnetic domain circuit. 

 

Note that the magnetic current (flux) flows through the mmf source inside the magnet.  When 

that flux is changing not only is power being delivered to the load resistor but also the 

magnetic energy stored in the air-gap reluctance is changing.  That stored energy W is given 

by 

 RW
2Φ=         (7) 

The changing flux also draws energy from (or gives back energy to) the magnet’s mmf 

source, power flow P being given by 
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Normally generators operate in a regime where the load resistor RLOAD is much greater than 

the reactance of the coil, which is another way of saying the coil’s L/RLOAD time constant is 

small.  Because of the relationships (3) between electrical inductance L and the internal 

reluctance RM, and (6) between the magnetic inductance LM and the electrical load resistor 

RLOAD, the internal magnetic time constant LM/RM and the external electric time constant 

L/RLOAD are the same.  So the normal operating regime is where the internal magnetic circuit 

is dominated by the air reluctance, the energy extracted from the mmf flows between source 

and the reluctance, a negligible amount flows between the source and the magnetic inductor.  

It is then found that energy flowing into the load actually comes from the mechanical force 

needed to operate the magnetic switch, to move the ferromagnetic parts together or apart.  

Hence classical generators do not extract energy from the magnets.  But within classical 

generators there exists that back and forth flow of energy between magnet and the air 

reluctance that so far has been ignored by the scientific community. 

 

The situation is different if we move to a regime where the time constants are long which 

requires the load resistor to be very small.  Then in the magnetic circuit the magnetic inductor 

LM is very large and dominates the circuit.  Now we have the situation where most of the 

energy extracted from the mmf source during a rising period of flux gets “stored” in the 

magnetic inductor, but that is actually energy dissipated in the load resistor.  There is little 

energy change in the reluctance, in the field energy stored in the air gap.  But what happens 

when the flux is falling after the switch is opened?  Falling flux also produces an energy flow 

into the load resistor, while at the same time feeding energy back into the mmf source.  This 

dilemma could be resolved when we consider the mechanical forces needed to operate the 

magnetic switch in this regime, and it is possible that they could completely explain the 

energy imbalance, there could be no overunity.  However the eddy current heater detailed in 

international patent WO 03/0011002 “Magnetic Heater Apparatus and Method” assigned to 

MagTec LLC suggests otherwise.  This describes a form of heater where an electrically 

conductive disc is rotated close to an array of permanent magnets.  Eddy currents induced into 

the disc create heat that is transported away by contact with a fluid flow.  Data is given on the 
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performance of a heater where the fluid is air at a flow rate of 3200ft
3
/min provided by a fan 

consuming 1.76KW, the air being raised in temperature by 80°F from contact with the heated 

disc driven by an electric motor consuming 20.9KW.  This equates to a COP of 3.58.  The 

preferred material for the disc is stated as Cu.  This invention could provide important 

evidence that operating with low load resistance does extract energy from the mmf sources in 

the magnets.  

 

From the simple equivalent circuit figure 4, summing the instantaneous mmfs around the 

closed path we obtain  

 0=−−
dt

d
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Φ
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When the reluctance R dominates we find that 0⇒L  hence we obtain 
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from which we obtain 
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Thus 
dt

dΦ
, which is responsible for the voltage induced into the coil hence also the current 

through the load, comes predominantly from the changing reluctance, not from the magnetic 

inductance L.  This is the situation that applies to classic generators, and that puts the peak 

coil current at an armature position that produces peak drag torque.  Analyses of these 

generators show that, ignoring friction and windage losses, power delivered to the load 

resistor (which includes the coil resistance) always equates to shaft power needed to supply 

this torque. 

 

Now consider the case where magnetic inductance L dominates equation (9) and we obtain 

 
L
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In a classical generator, which now has a very small load resistor across the coil, this shifts 

the peak coil current to an armature position where the torque is near zero.  To test this 

hypothesis we need a full solution to the differential equation (9).  Rearranging (9) into a 

standard form we obtain 
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for which the solution for Φ may be obtained from 
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For the first integral, if R varies with time in a sinusoidal manner, a direct solution exists.  

Unfortunately for the second integral it appears there is no direct solution available, the 

Wolfram on-line integrator cannot find one.  Thus it requires an iterative approach, which has 

been done on a spreadsheet using Simpson’s Rule for the second integral.  Magnetic 

reluctance was modeled as )sin(0 tRRR PEAKM ω+=  using practical values.  The solution was 

obtained over 10 cycles of a 100Hz waveform with the results shown below.  Chart 1 shows 

the variation of the total reluctance from time zero.  Chart 2 shows the flux waveform for a 

20Ω load resistor where it is seen that the flux develops its cyclic nature almost immediately.  

This is because at that load resistance the magnetic time constant is 1.57×10
-4

, a small part of 

a cycle.  The phase correlation between the reluctance RM and the flux Φ is seen more easily 

in the expanded charts 3 and 4 which show the last two cycles.  Note that maximum flux 

occurs at minimum reluctance. 

 



Chart 5 shows the flux for a load resistance of 0.2Ω where the magnetic time constant is now 

100 times greater.  The flux is seen to build up from time zero before settling down into the 

cyclic regime.  Chart 6 shows the last two cycles to compare with chart 4 where it is seen that 

the flux waveform has shifted by almost 90 degrees.  This confirms the existence of this phase 

delay in the magnetic domain.  Note that maximum rate of change of flux now occurs at 

positions where the reluctance is maximum or minimum.  These occur when the rotor 

ferromagnetic slug is either in full alignment with the gap or furthest away.  At these positions 

the torque is zero, the load current has no influence on the torque. 

 

Chart 1. Variation of Reluctance with time 

 

Chart 2.  Flux waveform for short magnetic time-constant 

 

Chart 3.  Last 2 cycles of  Reluctance waveform 
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Chart 4.  Last 2 cycles of flux waveform for short magnetic time-constant 

 

Chart 5.  Flux waveform for long magnetic time-constant 

 

Chart 6.  Last 2 cycles of flux waveform for long magnetic time-constant 
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4. Conclusion 

 

Dynamic analysis of the magnetic domain circuit of a generator shows that when heavily 

loaded the flux waveform is phase shifted by 90º which presents the peak load current at an 

armature position where it cannot produce torque.  This offers the possibility of creating an 

OU generator, the down side being that the load resistor has to be lower than the normal loss 

resistance of the coil.  Thus the possibility of this is normally hidden from view, the classic 

generator running at such low resistance loads (a) dissipates most of its energy in the coil 

hence is very inefficient and (b) because of the finite coil resistance doesn’t reach the OU 

region anyway.  One example of a generator that does reach this OU region is the eddy-

current heater detailed in international patent WO 03/0011002 where the coil is effectively 

just the eddy current loops.  However the analysis has identified what is needed to engineer a 

system that can provide this energy in electrical form to an external load.  It is clear that when 

room temperature superconductors become available such a system is easily produced, but 

meanwhile we have to contend with coils with minimum turns and maximum copper.  And 

since we need very low load resistance applied to such a coil, it would seem sensible to 

eliminate slip-rings or commutators by having the coil fixed while the magnet(s) move.  This 

arrangement inevitably yields AC, so the obvious thing to do is employ a step-up transformer 

between the coil and the final load, thus applying a very low value load to the coil.   


