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1. Introduction. 
 
This paper examines the force-field needed to extract energy from the spinning/orbiting motion 
of electrons responsible for magnetism, that energy being continually replenished by the active 
vacuum.  This is seen to involve two types of voltage induction, one being a radiative electric 
field and the other longitudinal induction from charge movement through a non-uniform vector 
magnetic potential field; methods for creating these are discussed. 
 
2.  The Solenoid Equivalent for a Permanent Magnet 
 
Permanent magnets are often characterised by an effective surface current.  This current is 
imagined to flow around the surface of the magnet and to be responsible for the magnetic field of 
the magnet. 

Figure 1.  Permanent Magnet and its Equivalent Solenoid 
 
Of course no such current exists, the field actually emanates from a vast number of spinning or 
orbiting electrons.  However the surface current analogy is useful for predicting performance of 
some magnetic circuits, effectively the magnet is replaced with an air cored solenoid of identical 
dimensions, Figure 1.  This imaginary solenoid is considered energised by a current source where 
the current is effectively continuously supplied by Nature, IATOMIC in Figure 1.  It is therefore 
pertinent to ask the question, what is needed to load this current source so that energy is drawn, 
that energy then also being supplied by Nature?  The answer is of course to have a voltage 
induced into the solenoid.  If this voltage is of the correct polarity, energy is taken from the 
current source, if of the opposite polarity energy is given up to the current source. 
 
That an induced voltage can extract such quantum energy is already an established fact, albeit 
hidden in EM theory and practise.  Take a simple magnetic circuit consisting of a high 
permeability core with an air gap.  Energise a coil on that core, Figure 2. 
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Figure 2. Magnetic Energy Supplied by One Coil 

 
When we pass DC current I1 through that coil we initially extract energy from its power source to 
“charge” its inductance: thereafter the continuous current drain extracts energy only to feed the 
copper losses, which we shall ignore.  That initial quantity of energy (which we can call one unit) 
is effectively all stored in the air gap, and was drawn while the flux build-up induced a voltage to 
load the current source.  Now apply the same current I2 to a second identical coil, Figure 3. 
 

 
Figure 3.  Magnetic Energy Supplied by two Coils 
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The flux in the air gap is doubled in value, but energy is proportional to flux squared, so the 
energy stored there is now four units.  However the charging of the second inductor takes only 
one unit of energy from its power source, so where has that extra two units come from?  The 
answer is in that extra flux build-up creating voltage in the first coil to impose a second load 
impulse on its power source.  If we now replace the first coil with a permanent magnet having 
equivalent surface current I1=IATOMIC, Figure 4, we find that the initial, single, unit of energy is 
supplied by the magnet, by its electron circulations, the quantum dynamos. 

 
Figure 4.  Magnetic Energy Supplied by a Permanent Magnet 

 
Now when we have the second coil in place, Figure 5, carrying current so as to also provide to 
the gap one unit of energy, we get the two additional units of energy in the gap supplied by the 
Magnet 

 
Figure 5.  Magnetic Energy Supplied by a Permanent Magnet and a Coil 
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This is the basis of an OU reluctance motor described by Aspden, who argued correctly that the 
gap’s 4 units of energy could be extracted mechanically by allowing a permeable rotor to be 
pulled into the gap.  He imagined the current supplied to the coil being reduced in value during 
this gap closure so as to keep the flux constant, thus drawing no extra energy from source I2.  
Then I2 can be turned off, and the gap reopened, requiring just one unit of mechanical energy to 
do that.  Thus, for an input of one unit of electrical energy, three units of mechanical work would 
be achieved.  However the flaw in his argument becomes apparent when you examine the 
complete system (not just the air gap) over a full cycle.  This must include the effective air gap of 
the magnet (which Aspden ignored) and the energy supplied from source I2 to that gap. After the 
active gap is closed, giving up its 4 units of energy as mechanical output, it is not possible to 
regain all of the energy put into the magnet air gap, and that “lost” energy accounts for Aspden’s 
apparent OU.   
 
The value in the above exercise is the demonstration that voltage induction into an actual coil, 
which is responsible for extracting energy from its current source, has the same effect on the 
imaginary coil of the PM, and energy is extracted from the PM. 
 
A changing B field creates a circulatory E field, which induces voltage V into a coil so as to load 
its current source I, Figure 6.  Power=V⋅I. 

 
Figure 6.  Voltage Induction loads a Current Generator 

 
 
The same goes for a permanent magnet, the circulatory E field created by the changing B field 
does genuinely load the quantum dynamos, Figure 7.  Power=V⋅IATOMIC. 
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Figure 7.  Voltage Induction loads the Atomic Currents 

 
We see that it is a very simple matter to extract energy from a PM over one part of a machine 
cycle.   The problem comes when we return the machine to its starting conditions, the flux change 
has to reverse, the drag on the quantum dynamos becomes a boost and all the “free” energy 
gained gets fed back to the quantum world.  What is needed for continual extraction of energy 
from the PM is not induced cycles of alternating voltage, but a continuous DC induction.  
Achieving this by flux change requires the impossibility of flux increasing infinitely.  We need 
voltage induction that is not based on flux change, Figure 8. 

 
Figure 8.  The needed Induction Field 
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3.  DC Voltage Induction into a Coil? 
 
It is accepted wisdom in electromagnetic theory that DC induction into a coil is impossible.  This 
view is based on the premise that induction involves a time rate of change of magnetic flux 
through the coil; essentially a DC voltage induction would require a magnetic field which rises 
continuously to infinity.  However it should be noted that there is an interim step between the 
changing magnetic field (B) and the voltage induction.  Induction involves a force on the 
conduction electrons, and by definition a force on an electric charge comes from an electric (E) 
field.  The changing B field appears to create an E field, and it is the E field which drives the 
electrons.  This E field is non-conservative.  Unlike the conservative Coulomb field, here a 
closed integral does not yield zero, it yields a certain value, the volts per turn.  Note that when 
dealing with alternating fields the phase relationship between the B field and its apparently 
created E field is 90°. 
 
What is generally overlooked in the perceived wisdom is the established fact that this quadrature 
phase relationship between co-located B and E is not a universal requirement.  Take EM 
radiation as an example.  EM radiation in the far field involves B and E fields which are in phase 
(in phase with respect to time, but they are in space quadrature).  At the wave crests, both B and 
E are at a maximum value; dB/dt is zero, but E is at a maximum.  Taken to the low frequency 
limit of DC, this can allow a static E field to coexist with a static B field. 
 
Most scientists will quote one Maxwell equation as evidence that an E field is linked to a 
changing B field:- 

t∂
∂−=×∇ BE         (1) 

This tells us that if B is changing with time then there is an E field which has curl, i.e. E changes 
with distance at right angles to itself.  It does not tell us that if the B field is static then E is zero.  
When we look at (1) in relation to far-field EM radiation, we find that E and H are in phase, 
having the ratio Z0 (the impedance of free space), hence 

c
Z

B
E ==

0

0

µ
        (2). 

Therefore we can rewrite (1) to be 

ct
E 1⋅

∂
∂−=×∇ E        (3). 

The only component of the Curl function is j
z

E x

∂
∂

, where z is the radiation direction, x is the 

polarisation direction and j is the unit vector along the y direction, then since 
t
z

c
∂
∂=  we get 

t
E

t
z

z
E xx

∂
∂−

=
∂
∂⋅

∂
∂

       (4). 

In this far-field case the Maxwell equation (1) simply tells us the obvious, that if at a fixed point 
in space B and E are changing with time, then when we look back along the approaching 
radiation, we will see both the E and B waveforms changing with distance.   The changing B 
does not create the E, B and E both exist together in synchronism.  Figure 9 illustrates this, 
showing a radiated sine wave, with an observation point P1.  At this point in space and time, this 
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is the peak of the sine wave where dB/dt is zero, and so is dE/dt.  If we look along the 
propagation (z) direction we see that the Curl components dB/dz and dE/dz are both zero.   

 
Figure 9 

  
The Curl function is cyclic with respect to time.  If we look at a different point in space (or time), 
say point P2 at the sine wave zero crossing, then Curl B and Curl E each have maximum values, 
as do the time differentials dB/dt and dE/dt.  It is obvious that time differentials must be 
accompanied by space differentials, that dE/dt must accompany dE/dz and dB/dt must 
accompany dB/dz; equation (1) neatly expresses this, the Z0 impedance relationship and the 
space quadrature between B and E all in one simple expression.  But to reiterate, E and B can 
coexist as quasi-static fields where there is no dB/dt or dE/dt present, as at point P1. 
 
It is worth noting that in this radiation field, voltage induction into a closed loop does relate to 
change of flux through that loop.  A loop placed across the B field at position P1 will not receive 
voltage at that point in time.  This is easily seen by considering a rectangular loop where 
induction occurs only on the leading/trailing edges.  Voltage induction requires that there is a 
difference between the leading and trailing E fields, i.e. Curl E is not zero, and if that is so then 
dB/dt also is not zero. 
 
The far-field radiation shown has a wave impedance E/H of Z0, 377 ohms.  In the near-field, i.e. 
close to the radiation source, wave impedance becomes complex and deviates widely from Z0.  It 
can be very low or very high, depending on the type of radiator, and its value changes with 
distance.  It will now be shown how local static but highly non-uniform radiation E and B fields 
can be created, where the two fields change value with distance because of different range 
dependencies.  The non-uniform E field drives DC induction voltage into a coil without dB/dt 
being present. 
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4.  Electron Acceleration 
 
It is established physics that a linearly accelerating charge radiates EM.  In its most basic form, a 
point charge Q traveling at velocity v produces around it an A field related to v. 

r
Q
π

µ
4
0 v

A =              (5) 

Everywhere, A points in the velocity direction, and the magnitude of A varies with inverse 
distance r.  If the charge is accelerating along v, then A is changing with time yielding an E field 

dt
d

r
Q

dt
d vAE

π
µ
4

0−=−= .      (6) 

 
For an electron, which has negative charge, the A field and the E field are reversed, thus A points 
in the opposite direction to the velocity and E points in the acceleration direction, Figures 10 and 
11. 
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Figure 10. A Field around a moving electron 
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Figure 11. E Field around an Accelerating Electron 

 
This E field is of interest because it has unusual properties.  Because of it’s A field derivation it is 
non-conservative, an integration round a closed circuit does not necessarily yield zero voltage.  
Also we can’t describe it by the familiar field line concept, where field amplitude is indicated by 
the line spacing.  That protocol has historical connotations (remember the old lines per square 
centimeter?), but is still used universally to describe fields.  It adequately does so when the fields 
are conservative, where the fields can be described by the gradient of a scalar function, but the 
radiative field we are discussing does not fall into that category.   All the E field lines from the 
electron acceleration point in the same direction, the lines are all parallel.  If we wish to display 



9 

field strength by line spacing, we would have lines which begin and end in space, which is 
nonsense.  In Figure 11 the field strength is denoted by the length of the arrows. 
 
Consider a closed loop close to an electron e which suddenly receives an acceleration impulse, as 
shown in Figure 12.  If we take the E field component tangential to the loop at different points 
(e.g. denoted by the black dots), starting at the position furthest from the electron, we get a chart 
of the form shown.  The closed integral of this component is non-zero, the E field induces voltage 
into that loop. 
 

 
Figure 12.  Induction around a Closed Loop. 

 
The graph in Figure 12 was derived using equation (6) in a spreadsheet.  For a single electron, 
which changes velocity over a small distance compared to the dimensions of the loop, the voltage 
is a unidirectional time-impulse. 
 
Now consider a stream of electrons arriving at the acceleration region at low velocity, and 
leaving at high velocity, Figure 13. 

 
Figure 13.  Electron Stream with Acceleration Region 
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This beam of electrons gives rise to a stream of unidirectional E field impulses, which time-
integrate to a constant (static) level.  A coil placed in that field as shown will receive DC voltage 
induction.  Note that the current in the beam is everywhere constant, even though the velocity 
changes.  Hence the circular B field from that current is also constant, and so too is the 
longitudinal A field.  This poses a dilemma, since there is now no dA/dt to “create” the E field.  
In essence, when we look near the acceleration region, the increase in A or B (which are both 
proportional to velocity) that would come from the increase in velocity is negated by the 
reduction in charge density, hence a reduction in the impulse frequency.  However this does not 
apply to the E field impulses, which are proportional to the acceleration.  If this DC induction is 
shown to exist, it will demonstrate that the equations for induction E=-dA/dt and V=-dΦ/dt do 
not have universal applicability, and should be qualified in some way.  
   
5.  Mechanical Acceleration 
 
Now consider an electron traveling along a stationary conductor towards the rotating slip-ring of 
Figure 14.  This electron is part of any current flowing in the slip-ring circuit.  It travels along 
that conductor, then along the brush, at trivial drift velocity, but when it leaves the brush tip to 
enter the rotating slip-ring, it is suddenly accelerated to non-trivial velocity.  That acceleration 
takes place over a small distance, say the diameter of the brush tip, and the sudden acceleration 
up to slip-ring velocity produces an electric field impulse.  The accelerations of the many 
electrons, which make up a significant current flow, create many such unidirectional impulses, 
which appear as a constant DC field in the vicinity of the brush tip. 
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Figure 14.  E Field from Slip-Ring 
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It can be shown that the averaging of the many impulses gives the E field at a distance large 
compared to the acceleration region as 

r
vI

π
µ

4
0 ∆⋅

=E         (7) 

where ∆v is the change of velocity over the small acceleration region.  Since ∆v=vslipring-vdrift and 
vdrift is tiny, we get 

r

vI slipring

π
µ

4
0 ⋅

≈E        (8) 

Thus for a slip ring with surface velocity 10m/s and a current of 100A we get an E field at1mm 
from the brush tip of 0.1V/m.  Although this is a relatively small field value, it is enough to 
induce measurable DC voltage into a practical multi-turn coil.  To the Author’s knowledge this 
DC induction has not been discovered before.  This E field, although static, does not obey the 
normal rules of electrostatics.   
 
At the opposite side of the loop, conduction electrons leaving the slip-ring at the brush contact 
endure a deceleration, which creates a DC electric field near that brush tip, Figure 15. 
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Figure 15. Complete Slip-Ring 
 
If we now place two stationary coils within the slip ring, one close to each brush contact, we have 
a DC-DC transducer or transformer, Figure 16. 



12 

Brush

Brush

Drive Shaft

Slip Ring
rotates

Coils held stationary

Insulating Disc

Voltage Output

Current Input  
 

Figure 16.  DC-DC Transformer 
 
This transformer is current driven, so operates at low input impedance.  Current driven across the 
slip-ring creates the local static E fields described earlier, which induce DC voltage into the two 
coils (these coils are shown here as single turns, but of course they can be multi-turn).  Now what 
happens when that voltage drives a current through a load?  Current flow in the coils creates a 
static B and an A field, the A field being the important one.  The conduction electrons in the slip 
ring are transported at high velocity through the static but non-uniform A field, and it will now be 
shown that they endure longitudinal induction which loads the input current generator with 
voltage, thus taking power from it. 
 
6. Longitudinal Induction 
 
Consider a unit charge moving in the x direction in a non-uniform vector magnetic potential field 
A where the changing A component of interest is Ax, Figure 17. 
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Figure 17. Longitudinal Force 
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Denoting the x component of the field as Ax, we can express its partial derivative with respect to 
time as 

t
x

x
A

t
A xx

δ
δ

δ
δ

δ
δ

⋅=      (9) 

where δx/δt will be recognized as the speed v. 
 
There is evidence that if δAx/δx occurs because the vector A changes amplitude with distance (i.e. 
it is not a constant value vector which simply changes angle), then (9) gives rise to a force along 
the x direction 

x
A

qvqEF x
xx δ

δ
−=−=       (10) 

 
The factor δAx/δx is one component of the Divergence of the vector A.  The field has no Curl, 
there is no B field present. 
 
This non-B longitudinal induction is virtually unknown, it does not appear in EM texts and is not 
taught, yet it holds the key to explain many effects which are presently unexplained or simply 
considered anomalous. 
 
Consider now charge-movement which comes from physical displacement of the conductor.  
Because the induction is along the velocity direction, the conductor must point in that direction.  
This situation is shown in Figure 18. 
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Figure 18.  Conductor Element moving along x direction. 

 
Thus if we take a thin wire element pointing along the x direction and moving in that direction, 
each free electron in the conductor will endure a longitudinal force, there will be an emf induced 
in that element.  An example of this induction is found in the Distinti Paradox2, except there the 
conductor is stationary (in the form of a ring) while the A field source (two PM’s) revolve within 
it.  The total E-field along the conductor length is given by the integral 

Av
x

A
vdlEV x ∆=== � � ..

δ
δ

       (11) 

where ∆A is the change in Ax over the active length of the moving conductor. 
 
We can now turn our attention to the DC-DC Transformer of Figure 16 to analyse its 
performance. 
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7. DC-DC Transformer Analysis 
 
Figure 19 shows the A field generated by input current flowing though the two coils.  Conduction 
electrons in the slip ring are transported through this non-uniform field, thus enduring a force 
(10) shown as an induction electric field EA 

 
Figure 19 DC-DC Transformer 

  
The electrons move from –AMAX to +AMAX thus seeing ∆A=2AMAX, where AMAX is the A field 
value at the acceleration point, the brush tip.  Hence by (11) the induced voltage VOUT=2vAMAX, 
driving a load current of IOUT=2vAMAX/RLOAD.  AMAX can be obtained from the current element 
version of (5) 

r
I
π

µδ
4

.0 dl
A =          (12) 

by taking the closed integral around the coil of N turns carrying current IIN 

�=
r

NI INMAX π
µ

40

dlA         (13) 

Hence 

�=
r

NIvV INOUT π
µ

4
2 0

dl
       (14) 

The output current IOUT determines the quantity of electrons accelerated at the brush tips, which 
by (8) create the radiation field ER.  The voltage induced into the two coils is obtained by 
integrating the ER field (8) applied to each line element dl around each coil to get 
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�=
r

NIvV OUTIN π
µ

4
2 0

dl
       (15) 

Note that the integrals in (14) and (15) are identical.  Hence VOUT/VIN=IIN/IOUT, input power = 
output power.  If we take the constant K given by. 

�=
r

vK
π

µ
20

dl
         (16) 

then, since VOUT/IOUT=RLOAD, we get RIN=K2/RLOAD. 
 
There is no power gain in this transducer, a load is reflected from output to input, the system is 
truly reciprocal.  Note the mechanical rotation of the slip ring is merely the transport for the 
conduction electrons, it does not add energy to the system.  The only loads on the drive shaft are 
windage and the friction loads of the bearings and brushes. 
 
This DC-DC transducer might be considered speculative, since it defies convention.  It relies on 
two unrecognized aspects of electromagnetic behavior, (a) static unidirectional closed-loop 
induction near accelerating charges and (b) longitudinal induction from charge movement 
through a non-uniform A field.  Of interest is the fact that these unrelated aspects yield a COP of 
unity for the transducer, which could be considered indicative that the thing will actually work as 
stated. 
 
8.  The Marinov Generator 
 
Now consider the source for the non-uniform A field, through which electrons are transported, as 
magnets.   Disc magnets replace the coils of Figures 16 and 19, as shown in Figure 20.  We can 
replace the input current IIN with the equivalent surface current IATOMIC.  Now when we consider 
the E fields from the brush tips, it is seen that these induce a constant voltage into those surface 
loops.  There is a load placed on the atomic current generator.  In both E field regions the 
direction is such as to load the local surface current driver, thus taking power from both disc 
magnets.  It may be noted that the high values for equivalent surface current in magnets enable 
significant power extraction at the low induced voltages from the E fields. 
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Figure 20.  OU Marinov Generator 

 
This homopolar generator is a variation of the Distinti Paradox2 and is also a generator 
version of the Marinov Motor. The generated energy comes, not from the drive shaft, but from 
the quantum dynamos in the permanent magnets.  The manner in which that energy is 
extracted has been exposed. 
 
9.  Solid State Acceleration. 
 
There are non-mechanical structures where a continual stream of electrons is accelerated in one 
region of space and decelerated in another.  These can also be expected to exhibit the static E 
field radiation close to the acceleration regions.  One example is the electron beam generator in 
cathode ray tubes.  A more interesting example is the junction between a normal conductor and a 
superconductor.  Electron velocity inside a superconductor is certainly non-trivial, so across the 
junction significant acceleration takes place.  Figure 21 depicts a system which should exhibit 
negative resistance characteristics, thus being a solid state OU generator.  A ring magnet 
surrounds each junction, magnetized so that the DC radiation E field from each junction loads the 
quantum dynamos.  Current across the junctions is supplied by an external source.  The ring 
magnets produce a pair of opposing A fields along the super-conducting section, where the high 
speed electrons obtain longitudinal induction (gain energy) from the highly non-uniform A field. 
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Figure 21.  Solid State OU Generator. 

 
This scheme illustrates a feature that can also be applied to the Marinov Generator (and to other 
OU homopolar generators).  The more current we drive through the system, the greater the power 
extracted from the PM’s.  In the Marinov Generator it is not necessary to rely on the inherent 
voltage induction to create the load current.  An external DC voltage source in series will drive 
greater current hence, in addition to supplying its own power, will extract more free power from 
the magnets.  
 
10. Conclusions 
 
It has been shown that an induction E field can extract energy from a permanent magnet, the E 
field “loads” the atomic circulations which create the magnetism, the quantum dynamos.  
Normally this induction comes from a changing B field, so that over a complete cycle systems 
are conservative, the extracted energy gets fed back to the quantum dynamos.  However, it has 
also been shown that non-dB/dt unidirectional induction is possible close to accelerating 
electrons, yielding DC voltage induction into a coil.  This feature, along with longitudinal 
induction from charge movement through a non-uniform A field, offers a DC-DC transducer or 
transformer.  It is shown that such a transformer has a COP of unity (ignoring losses).  When 
permanent magnets replace the coils of that transformer, an electrical load on its output puts a 
load on the magnet’s quantum dynamos, thus yielding an over-unity machine.  Two versions of 
this generator are considered, one where the electrons are accelerated as they pass from a brush to 
a slip-ring, the other where they pass from a normal conductor to a super-conductor. 
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