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A Discussion on the Magnetic Vector Potential 
Cyril Smith, December 2009 

 

1. Introduction 

 

The magnetic vector potential A is a valuable tool in electromagnetic theory, yet for 

static fields its detection has proved elusive.  At the present time the only recognized 

detectors are Josephson Junctions which operate at cryogenic temperatures or 

experiments along the lines of the Aharonov-Bohm effect.   This paper introduces a 

new term into the classical equation for an electric field that allows static A fields to 

be detected or measured.  Examples are given of experiments that have been 

performed where the results can only be explained by this missing term. 

 

2. Theory 

 

If an A field is changing with time then its presence is easily detected as an electric 

field E producing force eE on electrons.  As is well known the relationship is 

t∂

∂
−=

A
E .       (1) 

Note this is a partial derivative for a point fixed in space.  If an electron is moving 

through a spatially non-uniform A field, then it seems reasonable to assume the 

electron endures another time-changing A due to that movement.  If that is true then 

we should replace the partial derivative (1) with a total derivative 

 
td

dA
E −=         (2) 

which can then account for both components.  For the case of the moving electron we 

must look for a vector function that has terms like 
x

A
v k

x
∂

∂
 where k can be any of the x, 

y or z coordinates.  The function that meets our requirement is ( )Av ∇⋅  which in 

Cartesian coordinates has the following components. 
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    (3) 

 

The total derivative (2) then give the electric field as 

 Av
A

E )( ∇⋅−
∂

∂
−=

t
      (4) 

where the first term is the so-called transformer induction due to the time variation 

and the second term is an induction from movement at velocity v.  It may be noted 

that (3) introduces both an electric field cE  parallel to the velocity, which for 

electrons moving in a wire creates voltage induction, and an electric field ⊥E  at right 

angles to the velocity that produces a sideways force on the wire.  Separating (3) into 

these two field components produces 
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    (6) 

 

The transverse field  (6) is seen to contain components that also occur in the classical 

BvE ×=  flux-cutting induction (see appendix), but accounts for only half the terms 

there.  To bring BvE ×=  into the argument we need a vector function that can be 

added to BvE ×=  and supplies the longitudinal components (5) while at the same 

time supplies the BvE ×=  terms missing from (6).  The appendix shows that those 

terms are supplied by ( )Av ⋅∇ , but that function also supplies unwanted terms 

involving spatial derivatives of v.  In the appendix the expression ( )Av ⋅∇ A  is used to 

denote that function with the velocity derivatives suppressed.  It is therefore possible 

to create the vector identity  

( )AvBvAv ⋅∇+×−=∇⋅ A)(     (7) 

hence equation (4) becomes 

 ( )AvBv
A

E ⋅∇−×+
∂

∂
−= A

t
     (8) 

Here we have the recognized transformer and flux-cutting induction terms, plus a new 

term that is seen to be a form of longitudinal induction i.e. along the electron velocity 

(current) direction.  This )( Av ⋅∇− A  term is missing from classical EM theory, and 

its inclusion opens the door to new discoveries. 

 

Adding the Coulomb term to (8) gives the full version for electric fields as 

    ( )AvBv
A

E ⋅∇−×+
∂

∂
−−∇= A

t
φ     (9) 

where φ is the scalar potential.  Thus we have two E field components that are both 

the gradient of a scalar, φ∇−  and ( )Av ⋅∇− A .  Bringing the two scalar terms 

together puts (9) into the form 

 Bv
A

AvE ×+
∂

∂
−⋅+−∇=

t
)(φ     (10) 

 

Sommerfeld [6] points out that in 1903 Schwarzschild introduced his "electrokinetic 

potential" L= (φ - v · A), so it is over 100 years since the scalar product v · A was 

recognized as a potential.  A Google search on "electrokinetic potential" plus 

Schwarzschild confirms that.  Schwarzschild's electrokinetic potential L is really a 

potential difference (note the minus sign) which when multiplied by the charge 

density forms a relavistic invariant, which was important in the development of his 
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Principle of Least Action.  The mathematical intricacies of that development is of 

little interest to engineers, they are interested in electric and magnetic forces that can 

do work.  The E field (10) is just that, hence it would be more sensible if the 

electrokinetic potential capable of doing work in a fixed laboratory frame were the 

sum (φ + v . A) and not the difference.   Thus, ignoring the electric potential φ, an 

electron moving at velocity v through an A field can be considered to have a kinetic 

potential v.A, or a kinetic energy e(v.A).  Note this is a maximum when v is parallel 

to A, when the electron travels along the A field, and has a value evA. 

 

3. Closed Line-Integral 

 

It is generally held that the closed line-integral of the gradient of a scalar is always 

zero, and such scalar fields are therefore conservative.  In the case of the Coulomb 

potential φ this is true, it is impossible to extract energy from that field.  But in the 

case of the effective scalar potential ( )Av ⋅  it is true only when, within the gradient 

function, the spatial derivatives of velocity are included.  When those derivatives are 

excluded (because to the best of our knowledge a changing velocity does not create an 

immediate force) a change of velocity has the effect of regauging the potential.  It is 

then quite easy to choose a forward path at a certain velocity through a non-uniform A 

field where the line-integral yields a voltage V, then follow a return path at a lower 

velocity where the line-integral yields a reversed value lower than V, hence the closed 

line-integral yields a non zero answer.  It is not necessary for the A field to have curl, 

the induction occurs even when a B field is not present.   

 

Examples where the voltage induction is known to occur are given in the next section.  

Meanwhile it should be noted that when a field is the scalar product of two vectors 

and the spatial derivatives of only one of those vectors contribute to the gradient of 

that scalar product, then the resulting field is not necessarily conservative.  This 

insight could be valuable for other applications.    

 

4. Examples 

 

4.1 Marinov Generator, see Smith [2] 
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The generator version of the Marinov motor has drawn little attention, presumably 

because experiments on the motor have proved to be inconclusive.  These experiments 

have looked for tiny values of torque, and there is little interest in motors yielding 

such low power.  However recent generator experiments using slip-rings have 

produced readily detectable voltages.  Here the forward path between diametrically 

opposing brushes follows the slip-ring contour where v is the slip-ring velocity, while 

the return path via the meter is through the connecting wires where v is the trivial 

electron drift velocity.  The net result is a voltage induced into that closed circuit from 

movement through the A field.  Although in these experiments the B field was also 

present, the voltage induction could not be explained by Bv ×  flux cutting. 

 

       4.2  Distinti Paradox 2, see [3] 

 

The Distinti Paradox 2 is essentially a more complex version of the Marinov 

generator.  Whereas the Marinov version uses fixed magnets near a rotating slip-ring 

connected by two fixed brushes, the Distinti version uses magnets rotating within a 

fixed ring, with brushes rotating with the magnets, then requires two more brush 

connections to the voltmeter.  Again, the induced voltage cannot be explained by flux 

cutting. 

 

5. Discussion 

 

The approach outlined in this paper has been put forward by others, notably Wesley 

[1] and Phipps [4].  Wesley and Phipps confine their discussion to the tiny torques 

offered by the Marinov motor, surprisingly no attention is given to the generator 

version which can yield more realistic results.  Errede [5] starts by equating BvE ×=  

in the laboratory frame to 
t∂

∂
−=

A
E  in the rest frame of the moving electron and 

derives a similar result.  He shows a moving metal rod being electrically polarized by 

the longitudinal induction term but then incorrectly assumes that a load connected 

across the rod will receive current from the voltage induction.   In fact, the load 

moving with the rod, will receive the same induction hence there is zero current 

through the load.  However if an infinitely long rod is moving, and a stationary load 

connects to the rod via brushes, then current will flow and power can be extracted. 
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6. Conclusion 

 

Contemporaneous EM theory has overlooked an important feature for voltage 

induction.  Electric charge moving through a non-uniform magnetic vector potential 

will endure a force at right angles to the motion given by the Bv ×  flux cutting rule, 

but in addition there is a force parallel to the motion given by a new ( )Av ⋅∇− A  

term.  The use of the scalar product v · A as a kinetic potential was recognized by 

Schwarzschild over 100 year ago, but only recently has the existence of this term been 

demonstrated by experiments.  An interesting feature is that when taking a closed 

integral around an electric circuit the potential can be regauged by a change of 

velocity, so unlike normal scalars the closed integral yields a non-zero result.  Therein 

lies not only a possible overunity machine, but also a method for detecting the A field. 
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Appendix. 

 

The Cartesian components of ( )Av ∇⋅  are: 

( ) =∇⋅ Av
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     (A1) 

where the overbars denote the longitudinal components parallel to the velocity. 

The Cartesian components of Bv ×  are: 

=× Bv
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    (A2) 

where there are no longitudinal components. 

The Cartesian components of ( )Av ⋅∇  are: 

( ) =⋅∇ Av
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which include spatial derivatives of velocity.  We are only interested in time 

variations of A since it is only these that induce an E field.  If we denote (A3) with the 

derivatives of velocity suppressed as ( )Av ⋅∇ A  then its components are: 

( ) =⋅∇ AvA
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     (A4) 

where as in (A1) the overbars represent the longitudinal components. 

Examination of the terms in (A1), (A2) and (A4) shows that we can create the identity 

( )AvBvAv ⋅∇+×−=∇⋅ A)(       (A5)
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